TOPIC: IMPLICIT DIFFERENTIATION

Finding the Implicit Derivative

- ♦ To differentiate the function NOT of the form y = f(x), take the derivative $\frac{d}{dx}$ of _____ term on both sides.
 - ► Since y is not isolated, find its derivative using the **chain rule**, then solve for $\frac{dy}{dx}$.

EXAMPLE

Find the derivative $\frac{dy}{dx}$.

Recall	Chain Rule	New	Implicit Differentiation
$\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)$			
$y = \sqrt{49}$	$9 - x^2 = (49 - x^2)^{\frac{1}{2}}$		$x^2 + y^2 = 49$
$\frac{dy}{dx} = \frac{1}{2}(4$	$(49 - x^2)^{-\frac{1}{2}} \cdot \frac{d}{dx} (49 - x^2)$	2)	
$=\frac{1}{2}(4$	$(-9-x^2)^{-\frac{1}{2}} \cdot -2x$		
$=\frac{1}{\sqrt{49}}$	$\frac{-x}{0-x^2}$		

TOPIC: IMPLICIT DIFFERENTIATION

PRACTICE

Find $\frac{dy}{dx}$ for the equation below using implicit differentiation.

$$5x^2 + y^3 = 12$$

PRACTICE

Find $\frac{dy}{dx}$ for the equation below using implicit differentiation.

$$3\sqrt{y} = x - y$$

TOPIC: IMPLICIT DIFFERENTIATION

PRACTICE

Find $\frac{dy}{dx}$ for the equation below using implicit differentiation.

$$xy = \sin(y)$$

EXAMPLE

Given the equation $\frac{2}{x} - \frac{1}{y} = 36$, (\boldsymbol{A}) find y' using implicit differentiation. (\boldsymbol{B}) Solve the equation explicitly for y and differentiate to get y' in terms of x. (\boldsymbol{C}) Check that your solutions are consistent by substituting the expression for y derived in part (\boldsymbol{B}), into your solution for part (\boldsymbol{A}).