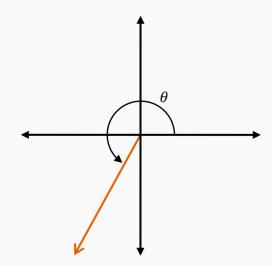
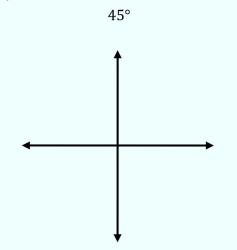

Angles in Standard Position

- ◆ Angles: The "gap" between 2 line segments/sides, measured in degrees (°) from ____ to ____ on the x/y plane.
 - ▶ Always draw from [INITIAL | TERMINAL] side (___-axis) to [INITIAL | TERMINAL] side ("standard position").
 - ▶ Draw positive angles in the [CCW ♂ | CW ♂] direction, negative angles in the [CCW ♂ | CW ♂] direction.



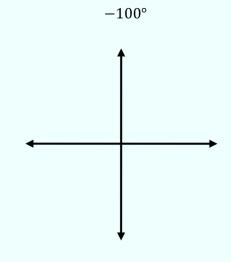
PRACTICE

What is the approximate measure of the angle shown below? Choose the most reasonable answer.

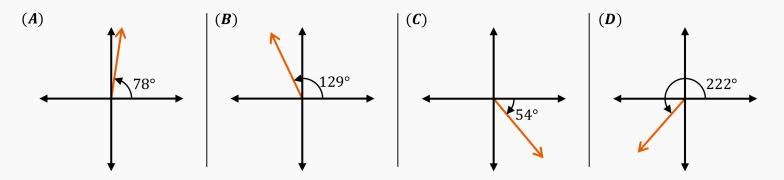

- $(A) 60^{\circ}$
- $(B) 150^{\circ}$
- (**C**) 240°
- (**D**) 300°

EXAMPLE

Sketch each angle in standard position.


(A)

(B)



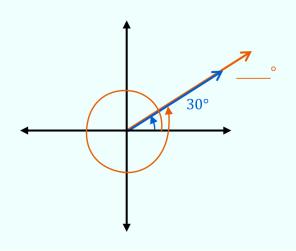
(C)

PRACTICE

Which angle is **NOT** a positive angle drawn in standard position?

Introduction to Coterminal Angles

- ullet You'll sometimes need to draw angles which are NOT between 0° & 360° .
 - Angles are COTERMINAL if they point in the same direction, i.e. same [INITIAL | TERMINAL] side.
 - ▶ To find angles which are coterminal with a given angle, add or subtract multiples of _____.


EXAMPLE

Find an angle between 0° & 360° which is coterminal with the given angle.

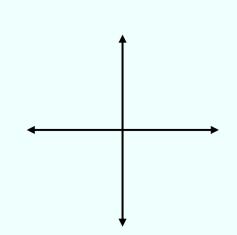
(A)390°

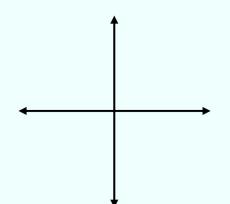
1000°

EXAMPLE

Find the smallest positive angle coterminal with the given angle. Sketch the angle in standard position.

(A)

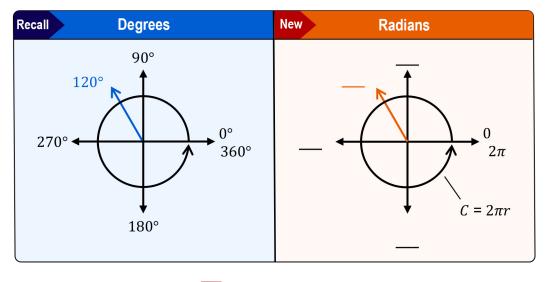

710°

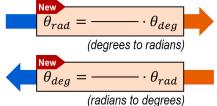

(B)

-37°

(C)

 -480°





Converting between Degrees & Radians

◆ Radians: A different unit for measuring angles, based on a circle's circumference. Full circle = 360° = ____ radians

EXAMPLE

Convert the angle from degrees to radians or from radians to degrees.

(A)

120°

(B)

 $\frac{6\pi}{\Box}$

PRACTICE

Convert the angle 540° from degrees to radians.

Recal

$$\theta_r = \frac{\pi}{180^{\circ}} \cdot \theta_d$$

(degrees to radians)

$$\theta_d = \frac{\mathbf{180}^{\circ}}{\boldsymbol{\pi}} \cdot \theta_r$$

(radians to degrees)

PRACTICE

Convert the angle $-\frac{5\pi}{6}$ from radians to degrees.

Recall

$$\theta_r = \frac{\pi}{180^{\circ}} \cdot \theta_d$$

(degrees to radians)

$$\theta_d = \frac{180^{\circ}}{\pi} \cdot \theta_r$$

(radians to degrees)