Introduction to the Unit Circle

◆ Unit Circle: Circle of radius 1 relating angles from 0 to 360° (or ____ radians) to x & y values. Centered at (_____ , ____).

EXAMPLE Identify which points are on the unit circle and label them on the graph.

(A) $(1,1) \qquad \qquad \text{[ON | NOT ON] unit circle}$

(B) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ [ON | NOT ON] unit circle

PRACTICE Identify the quadrant that the given angle is located in.

$$(A)$$
 $\frac{7\pi}{4}$ radians Quadrant: _____

$$({m B})$$
 $\frac{\pi}{7}$ radians Quadrant: _____

PRACTICE

Test whether the point is on the unit circle by plugging it into the equation.

$$\left(\frac{-\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}\right)$$

New	Unit Circle	
	$x^2 + y^2 = 1$	

Sine, Cosine, & Tangent on the Unit Circle

◆ **Trigonometric Functions** relate angles to _____ on the unit circle. On the unit circle:

▶ The SIN of an angle is ALWAYS the ___ value or the ____ of the corresponding triangle.

▶ The COS of an angle is ALWAYS the ___ value or the ____ of the corresponding triangle.

The TAN of an angle is ALWAYS —

(B)

EXAMPLE

Find the sine, cosine, and tangent of each angle using the unit circle.

$$\cos 217^{\circ} =$$

$$\sin 60^{\circ} =$$

$$\cos 60^{\circ} =$$

$$x$$
 tan 60° = ____

PRACTICE

Find the sine, cosine, and tangent of each angle using the unit circle.

 (\mathbf{A})

(**B**)

Sine, Cosine, & Tangent of 30°, 45°, & 60°

- You'll use trig values of 30°, 45°, & 60° (or $\frac{\pi}{6}$, $\frac{\pi}{4}$, & $\frac{\pi}{3}$) in most problems; Here's 2 methods to help memorize them.
 - No matter how you choose to memorize these values, ALWAYS start with $\frac{\sqrt{}}{2}$

1) The 1-2-3 Rule

2) The Left Hand Rule

$$\cos \theta = \frac{\sqrt{fingers \ above}}{2}$$

$$\sin \theta = \frac{\sqrt{fingers \ below}}{2}$$

$$\tan \theta = \frac{\sqrt{fingers \ below}}{\sqrt{fingers \ above}}$$

EXAMPLE

Fill in all of the missing information.

Reference Angles on the Unit Circle

- ◆ When given angles not in Q1, link them back to known Q1 angles (30°/45°/60°) by finding their reference angle.
 - ▶ To do this, measure from the *given angle* directly to the _____ part of the *x*-axis & write as a positive number.

PRACTICE

Identify the reference angle of each given angle.

 (\mathbf{A})

120°

(**B**)

 $\frac{7\pi}{4}$

(**C**)

210°

Trig Values in Quadrants II, III, & IV

- ◆ The sin, cos, & tan of angles NOT in Q1 have the same value as the sin, cos, & tan of their reference angles.
 - ► HOWEVER, the _____ of the values will change based on their quadrant.

EXAMPLE

Use reference angles to complete the missing trig values in quadrants II, III, & IV of the unit circle.

PRACTICE

Identify what angle, θ , satisfies the following conditions.

$$\sin\theta = \frac{1}{2}; \tan\theta < 0$$

$$\theta = \underline{\hspace{1cm}}$$

$$\cos \theta = \frac{\sqrt{3}}{2}; \sin \theta < 0$$

$$\theta = \underline{\qquad}$$

$$\tan \theta = -1; \cos \theta > 0$$

$$\theta = \underline{\hspace{1cm}}$$

EXAMPLE

Fill in all missing information in the unit circle below.

Coterminal Angles on the Unit Circle

- ◆ For angles > 360° or < 0°, use coterminal angles to find trig values, as they are equal to those on the unit circle.
 - Coterminal Angle: Angle with the same terminal side as another angle between 0 & 360°.
 - Find coterminal angles on the unit circle by adding/subtracting multiples of 360° (or 2π rad) to a given angle.

Recall Coterminal Angle $\theta_2 \pm 360^{\circ} \cdot n = \theta_1$ $390^{\circ} _ = _$

EXAMPLE

Evaluate each trig function using coterminal angles on the unit circle.

PRACTICE

For each expression, identify which coterminal angle to use & determine the exact value of the expression.

(A)

$$\sin \frac{7\pi}{3}$$

Coterminal Angle: _____

(**B**)

tan 765°

Coterminal Angle: _____

(**C**)

$$\cos\left(-\frac{10\pi}{4}\right)$$

Coterminal Angle: _____

Cosecant, Secant, & Cotangent on the Unit Circle

- ◆ Recall: Besides Sine, Cosine, & Tangent, there are 3 other trig functions: Cosecant, Secant, & Cotangent.
 - These are the reciprocal trig functions, so find them by taking the reciprocal of sin, cos, & tan values on the unit circle.

Recall SIN, COS, & TAN	New SEC, CSC, & COT
$\sin \theta = y$	$\csc\theta = \frac{1}{\sin\theta} = \frac{1}{}$
$\cos \theta = x$	$\sec \theta = \frac{1}{\cos \theta} = \frac{1}{-1}$
$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{y}{x}$	$\cot \theta = \frac{1}{\tan \theta} =$

EXAMPLE

Evaluate each expression.

(A)

$$\csc\frac{\pi}{6}$$

(B)

$$\cot \frac{\pi}{4}$$

(C)

sec 0

PRACTICE

Evaluate each expression.

(A)

$$\cot \frac{11\pi}{6}$$

(B)

(C)

$$\sec \frac{\pi}{3}$$

TOPIC RESOURCE

The Unit Circle: Filled In

TOPIC RESOURCE

The Unit Circle: Blank

