TOPIC: DERIVATIVES AS FUNCTIONS

Derivatives

- ♦ Recall: **Derivative** is just the slope of the _____ line. Notations: f'(x), y', $\frac{dy}{dx}$
 - ▶ To write the eq'n for the derivative of a function at *any* point on the curve, use the **Definition of the Derivative:**

EXAMPLE

Find the derivative of $f(x) = x^2$ for **any** x. Use this to find the slope of the tangent line at x = 1 and x = -2.

TOPIC: DERIVATIVES AS FUNCTIONS

PRACTICE

Find the derivative of the function $f(x) = 4x^2 - 9x$.

PRACTICE

Use the definition of a derivative to find the derivative of the function $g(x) = x^3$ at x = -1.