Indefinite Integrals

◆ Recall: To evaluate *derivatives* of composite functions, we used the chain rule:

Recall $\frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x)$

► To evaluate *integrals* with composite functions, use **substitution**.

Substitution
$$\int f(g(x)) \cdot g'(x) dx = \int f(\underline{\hspace{0.5cm}}) \underline{\hspace{0.5cm}}$$

$$\int (x^2 + 1)^3 \cdot 2x dx = \int \underline{\hspace{0.5cm}}$$

$$= \underline{\hspace{0.5cm}}$$

$$= \underline{\hspace{0.5cm}}$$

EXAMPLE

Evaluate the integral by making a substitution.

$$\int \sqrt{4x-1} \, dx = \int \sqrt{4x-1} \cdot \underline{\qquad} \, dx$$

HOW TO: Evaluate Indefinite Integral with Substitution

- 1) Choose u = g(x) (inside fcn), then find du = g'(x) dx
- **2)** Rewrite int. *only* in terms of u & du; *If* needed: Mult. by _____ & ____
- **3)** Integrate with respect to u
- **4)** Replace u with g(x)

EXAMPLE

Use substitution to evaluate the given integral. Check your answer by differentiating.

$$\int (2x^3 + x + 7)^5 (6x^2 + 1) dx$$

HOW TO: Evaluate Indefinite Integral with Substitution

- 1) Choose u = g(x) (inside fcn), then find du = g'(x) dx
- **2)** Rewrite int. **only** in terms of u & du; If needed: Mult. by constant & reciprocal
- **3)** Integrate with respect to u
- **4)** Replace u with g(x)

EXAMPLE

Evaluate the indefinite integral.

$$\int x^2 e^{x^3} dx$$

PRACTICE

Evaluate the indefinite integral.

$$\int 3t\sqrt{t^2+7}\,dt$$

HOW TO: Evaluate Indefinite Integral with Substitution

- 1) Choose u = g(x) (inside fcn), then find du = g'(x) dx
- **2)** Rewrite int. **only** in terms of u & du; If needed: Mult. by constant & reciprocal
- **3)** Integrate with respect to u
- **4)** Replace u with g(x)

$$\int \frac{1}{(3x+2)^5} \, dx$$

$$\int \frac{1}{2x+5} \, dx$$

Substitution with an Extra Variable

- ullet Recall: If du is missing a constant multiple, multiply by that constant & its reciprocal to make substitution work.
 - ▶ If the integrand has an "extra x", rearrange u = g(x) to get ___ in terms of ___ & replace in integral.

EXAMPLE

Evaluate the integral by making a substitution.

$$\int x\sqrt{x+3} \ dx$$

HOW TO: Evaluate Indefinite Integral with Substitution

- 1) Choose u = g(x) (inside fcn), then find du = g'(x) dx
- **2)** Rewrite int. *only* in terms of u & du; *If needed*: \blacktriangleright Mult. by constant & recip.

ightharpoonup Rewrite x in terms of u

- **3)** Integrate with respect to u
- **4)** Replace u with g(x)

PRACTICE

Evaluate the indefinite integral.

$$\int x(5+x)^{79}dx$$

HOW TO: Evaluate Indefinite Integral with Substitution

- 1) Choose u = g(x) (inside fcn), then find du = g'(x) dx
- 2) Rewrite int. *only* in terms of u & du;
 If needed: ► Mult. by constant & recip.
 ► Rewrite x in terms of u
- **3)** Integrate with respect to u
- **4)** Replace u with g(x)

$$\int \frac{t}{\sqrt{t-2}} dt$$

$$\int \frac{x}{(x-6)^5} dx$$

	v	м	B /	ΡI	
-		ш	IWI	121	- 1

The marginal revenue of a coffee truck selling x latter is given by the function below:

$$R'(x) = \frac{2x}{\sqrt{3x^2 - 50}}$$

(A) Find the total revenue function R(x) if the revenue from selling 15 lattes is \$75.

(B) How many lattes must be sold for the truck to have a revenue of at least \$250?

EXAMPLE

Answer the following questions based on the population growth rate given below, where P(t) is the population of a particular species of fish present in a lake after t years.

$$P'(t) = 350 \cdot e^{t/3}$$

(A) Find P(t) given that there are 5000 fish in the lake at t = 0.

(B) Find the population of fish after 4 years.