TOPIC: THE CHAIN RULE

Intro to the Chain Rule

ullet To differentiate a composite function f(g(x)), start from the **outside** and work your way **inside**.

RULES OF DIFFERENTIATION		
Name	Rule	Example
Chain	$\frac{d}{dx}[f(g(x))] = \underline{\qquad}$	$\frac{d}{dx}(4x+5)^3 = \underline{\qquad}$

► Alternate notation: If y = f(u) and u = g(x), $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$.

EXAMPLE

Find f'(x) using the chain rule.

$$f(x) = 2(3x^2 - x)^4$$

TOPIC: THE CHAIN RULE

PRACTICE

Find the derivative of the function.

$$f(x) = \sqrt{5x^2 - 3x}$$

(B)
$$y = (8x^3 - 2x)^{3/2}$$

(C)
$$f(t) = (3t^2 + 7t - 2)^{10}$$

TOPIC: THE CHAIN RULE

EXAMPLE

Find $\frac{dy}{dx}$ for the function.

(A)
$$y = (2x - 1)^4 \cdot (3 + x)^2$$

(B)
$$y = \frac{(2x-1)^4}{(3+x)^2}$$