Introduction to Sequences

◆ A **Sequence** is a LIST of numbers in a specific ______.

 $\{2, 4, 6, 8, _\}$

- ► The _____ in a sequence are called **Terms** (a.k.a. "elements" or "members").
- ► Sequences can be *finite* (______ after a certain number) or *infinite* (go on _____).

EXAMPLE

Find the 5th term in each sequence & identify if the sequence is *finite* or *infinite*.

(A)

(B)

$$\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots, \dots\}$$

[FINITE | INFINITE]

FINITE | INFINITE]

- ◆ Sequences are like *functions*; they can follow _____ or equations.
 - ▶ Inputs are called **Indexes**, represented by _____, which ALWAYS starts at 1 and increases by 1
 - ▶ Outputs are called **Terms**, represented by ____.

	Fur	nctions				New		Sec	quen	ces			
Inputs	x	-1 2	2.5	√7	π		Indexes	n	1	2	3	4	5
Outputs	f(x)=2x	-2	5	5.29	6.28		Terms	$a_n = 2n$					
	y 9 8 7 6 5 4 3 2 1 1 1 2 3	$f(x) = \frac{1}{4 \cdot 5 \cdot 6}$	-	9 x				9 8 7 6 5 4 3 2 1	- a _n	= 2 <i>n</i>	7-8-5		

EXAMPLE

Find the first 3 terms in each sequence.

(A)

$$a_n = n^2$$

(**B**

$$a_n = \frac{1}{n+3}$$

((

$$a_n = (-1)$$

$$a_1 =$$
______, $a_2 =$ ______, $a_3 =$ _____

$$a_1 =$$
_____, $a_2 =$ _____, $a_3 =$ ____

PRACTICE

The first 4 terms of a sequence are $\{\sqrt{3}, 2\sqrt{3}, 3\sqrt{3}, 4\sqrt{3}, ...\}$. Continuing this pattern, find the 7th term.

PRACTICE

Determine the first 3 terms of the sequence given by the general formula.

$$a_n = \frac{1}{n! + 1}$$

Writing a General Formula

- ♦ The General ("explicit") Formula of a sequence is an equation for a_n ("general term") containing n. (n = 1, 2, 3, ...)
 - ► To determine the general formula, find the ______ between the numbers.

Common Patterns in General Formulas of Sequences								
If sequences	Increase by 1 or 2 or 3	Alternate signs	Contain fractions	Increase exponentially				
Formula contains*	n or $2n$ or $3n$	$(-,+,-,) \rightarrow (-1)^n$ $(+,-,+,) \rightarrow (-1)^{n+1}$	Fractions (top & bottom may be different)	(#) ⁿ				
EXAMPLE	{5, 6, 7, 8, 9}	{-5,5,-5,5,-5}	$\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \dots\right\}$	{2, 4, 8,16,32}				

*Note: You will often have to adjust your formula by $+, -, \times, \div$ constants to get the desired sequence.

EXAMPLE

Given the first 4 terms of a sequence shown below, write the general formula for the n^{th} term and use it to calculate the 15th term.

$$\{\frac{1}{1\cdot 2}, \frac{1}{2\cdot 3}, \frac{1}{3\cdot 4}, \frac{1}{4\cdot 5}, \dots\}$$

EXAMPLE

Given the first 4 terms of a sequence shown below, write the general formula for the n^{th} term and use it to calculate the 18th term.

$$\{-2,4,-6,8,-10,...\}$$

TOPIC: SEQUENCES Recursive Formula

- ullet Like general formulas, recursive formulas tell us how to find the n^{th} term in a sequence.
 - However, Recursive Formulas show how to find a_n based on the ______ term (a_{n-1}) instead of n.

Recall General Formula N				New		Rec	ursive	Form	nula								
	Indexes	n	1	2	3	4	5			Indexes	n	1	2	3	4	5	
:	Terms	$a_n = 2n$	a ₁ = 2	a ₂ = 4	a ₃ = 6	a ₄ = 8	a ₅ = 10			Terms	$a_n = a_{n-1} + 2$	<i>a</i> ₁ = 2					
	$oldsymbol{a_n} = oldsymbol{2n}$ Need [$oldsymbol{n}$ PREVIOUS TERM] to calculate $n^{ ext{th}}$ term								Need [$\displaystyle rac{a_n}{n} = rac{n}{n}$ PREVIOUS	•			te n^{th} :	erm		

EXAMPLE

Given the recursive formula and first term of each sequence below, find the next 3 terms.

(A)
$$a_n = 2a_{n-1} + 3$$
 B

$$a_1 = 1$$
 , $a_2 =$ ___ , $a_3 =$ ___ , $a_4 =$ ___

PRACTICE

Write the first 6 terms of the sequence given by the recursive formula $a_n=a_{n-2}+a_{n-1}$; $a_1=1$; $a_2=1$

<u> Arithmetic Sequences – Recursive Formula</u>

- ◆ Arithmetic Sequence: Type of sequence where the ______ between terms is always the _____ number.
 - This **common difference (d)** can be used to find additional terms using a recursive formula.

$$\{2, 7, 12, 17, \dots\}$$
 $a_1 = \underline{\qquad} \qquad d = \underline{\qquad}$

$$a_n = a_{n-1} + \underline{\hspace{1cm}}$$

EXAMPLE

For each sequence below, find the common difference and write the first 4 terms.

(A)
$$a_n = a_{n-1} + 4; \quad a_1 = 3$$

(B)
$$a_n = a_{n-1} - 6; \quad a_1 = 9$$

◆ To write a recursive formula from a given arithmetic sequence, first find the common difference.

EXAMPLE

Write a recursive formula for the sequence

 $\{2, 5, 8, 11, 14\}$

HOW TO: Write a Recursive Formula for Arithmetic Sequences

- 1) Find d by subtracting any 2 consecutive terms.
- 2) Write the formula, including the 1st term:

$$a_n = a_{n-1} + d; \quad a_1 = \#$$

PRACTICE

Write a recursive formula for the arithmetic sequence

$$\{8,2,-4,-10,...\}$$

(Arithmetic, Recursive)

<u> Arithmetic Sequences – General Formula</u>

- ullet The **General Formula** of arithmetic sequences gives the $n^{ ext{th}}$ term based on the _____ term & common difference d.
 - Remember: These equations allow you to calculate *any* terms *without* having to calculate previous terms!

Recall Recursive Formula	New General Formula
{2, 7, 12, 17,}	{2,7,12,17,}
$a_n = a_{n-1} + 5; a_1 = 2$	$a_n = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} (\hspace{1cm})$
$a_2 = a_1 + 5 = (2) + 5 = 7$	$a_2 = \cdots$
$a_3 = a_2 + 5 = (7) + 5 = 12$	$a_3 = \cdots$
$a_4 = a_3 + 5 = (12) + 5 = 17$	<i>a</i> ₄ = +()
$\boxed{a_n = a_{n-1} + d}$	$\boxed{a_n = a_1 + d(\underline{\hspace{1cm}})}$

EXAMPLE

For the sequence below, write a formula for the general or nth term and use it to find the 101st term.

 $\{2, 5, 8, 11, 14\}$

PRACTICE

Find the general formula for the arithmetic sequence below. Without using a recursive formula, calculate the 30th term.

$$\{-9, -4, 1, 6, \dots\}$$

Recall
$$a_n = a_1 + d(n-1)$$

(Arithmetic, General)

EXAMPLE

Write a general formula from the recursive formula below. What would be the 15th term in this sequence?

$$a_n = a_{n-1} + 3; \quad a_1 = 2$$

Recall
$$a_n = a_1 + d(n-1)$$

(Arithmetic, General)

EXAMPLE

The 4th & 6th terms of a sequence are $a_4=-2$ and $a_6=6$. Find the 18th term of the sequence.

Recall
$$a_n = a_1 + d(n-1)$$
(Arithmetic General

(Arithmetic, General)

Geometric Sequences – Recursive Formula

- ◆ Geometric Sequence: Type of sequence where the ______ between terms is always the _____ number.
 - lacktriangle This **common ratio** (r) can be used to find additional terms using a recursive formula.

Recall Arithmetic Sequence	New Geometric Sequence
{3, 6, 9, 12,}	{3,9,27,81,}
$a_1 = 3$ $a_n = a_{n-1} + 3$	$a_1 = 3$ $a_n = \underline{\hspace{1cm}}$
$a_n = a_{n-1} + d$	$a_n = a_{n-1} \cdot _$
[+ ×] number to get next term Grow [SLOWER FASTER]	[+ ×] number to get next term Grow [SLOWER FASTER]

◆ To write a recursive formula for a geometric sequence, first find the common ratio.

EXAMPLE

Write a recursive formula for the sequence.

$$\{5, 20, 80, 320, ...\}$$

HOW TO: Write a Recursive Formula for Geometric Sequences

- 1) Find r by dividing any 2 consecutive terms.
- 2) Write the formula, including the 1st term:

$$a_n = a_{n-1} \cdot r; \quad a_1 = \#$$

PRACTICE

Write a recursive formula for the arithmetic sequence

$$\{18, 6, 2, \frac{2}{3}, \ldots\}$$

(Geometric, Recursive)

Geometric Sequences – General Formula

- ullet The **General Formula** of geometric sequences gives the n^{th} term based on the _____ term & common ratio r.
 - Remember: These equations allow you to calculate **ANY** terms without having to calculate previous terms!

	Recall Recursive Formula	New General Formula
Arithmetic	$a_n = a_{n-1} + d$	$\boxed{a_n = a_1 + d(n-1)}$
Geometric	$\{3,6,12,24,\dots\}$ $a_n = a_{n-1} \cdot 2; a_1 = 3$ $a_2 = a_1 \cdot 2 = (3) \cdot 2 = 6$ $a_3 = a_2 \cdot 2 = (6) \cdot 2 = 12$ $a_4 = a_3 \cdot 2 = (12) \cdot 2 = 24$ $a_n = a_{n-1} \cdot r$	$\{3,6,12,24,\dots\}$ $a_n = \underline{\qquad} \cdot \underline{\qquad}$ $a_2 = \cdots$ $a_3 = \cdots$ $a_4 = \underline{\qquad} \cdot \underline{\qquad}$ $a_n = a_1 \cdot r(\underline{\qquad})$

EXAMPLE

For each sequence below, write a formula for the general or nth term and use it to find the 12th term.

{5, 20, 80, 320, ...}

PRACTICE

Find the 10th term of the geometric sequence in which $a_1=5$ and r=2.

(Geometric, General)

PRACTICE

Write a formula for the general or n^{th} term of the geometric sequence where $a_7=1458$ and r=-3.

Recall
$$a_n = a_1 \cdot r^{n-1}$$

(Geometric, General)