Intro to Series: Partial Sums

lacktriangle The sum of the first n terms of a ______, $\{a_n\}$ is called the n^{th} partial sum, s_n .

EXAMPLE

Given the sequence $\{a_n\} = \frac{1}{2^n}$, find (A) the first 5 terms of $\{a_n\}$ and (B) the first 5 partial sums and the n^{th} partial sum.

Recall Sequences	New Partial Sums (Finite Series)	
${a_n} = {a_1, a_2, a_3, \dots}$	$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + a_3 + \dots + a_n$	
$a_1 =$	$s_1 =$	
$a_2 =$	$s_2 =$	
$a_3 =$	$s_3 =$	
$a_4 =$	$s_4 =$	
$a_5 =$	$s_5 =$	
	$s_n =$	

lacktriangle The partial sums $s_1, s_2, s_3, \dots s_n$ form a *new* sequence, $\{s_n\}$.

EXAMPLE

Find a formula for the nth partial sum S_n of the given sequence $a_n = \frac{1}{n} - \frac{1}{n+1}$. Use this formula to find the sum of the first 15 terms.

PRACTICE

Compute the first four partial sums and find a formula for the nth partial sum.

$$\sum_{n=1}^{\infty} 2n - 1$$

Convergence of an Infinite Series

- ◆ An infinite series is the sum of infinitely many terms in a sequence
- New $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots = \lim_{n \to \infty} s_n$
- ▶ If $\lim_{n\to\infty} s_n$ is finite, the series [CONVERGES to $\lim_{n\to\infty} s_n$ | DIVERGES].
- ▶ If $\lim_{n\to\infty} s_n$ DNE, the series [CONVERGES to $\lim_{n\to\infty} s_n$ | DIVERGES].

EXAMPLE

Find the series' sum if it converges, or state that it diverges.

$$\sum_{n=1}^{\infty} \frac{1}{n+1} - \frac{1}{n+2}$$

[CONVERGES to _____ | DIVERGES]

lacktriangle If $\sum a_n$ and $\sum b_n$ are convergent series, then $\sum a_n$ b_n and $\sum a_n$ are also convergent.

EXAMPLE

Find a formula for the n th partial sum and use it to find the series' sum (if it converges).

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \cdots + \frac{1}{n\cdot (n+1)} + \cdots$$

Geometric Series

lacktriangle Recall: A geometric sequence has a common ratio r and is in the form

Recall
$$a_n = a \cdot r^{n-1}$$

CONVERGENCE TESTS				
Name	Series	Converges if	Diverges if	
Geometric Series	$\sum_{n=1}^{\infty} a \cdot r^{n-1} \text{or} \sum_{n=0}^{\infty} a \cdot r^n$	$ r $ 1 & sum is: $S = \frac{a}{1-r}$	r 1	

EXAMPLE

Determine whether the given series are convergent. If so, find the sum.

$$(A) \qquad \sum_{n=0}^{\infty} 3\left(\frac{2}{5}\right)^n$$

(B)
$$1 - \left(\frac{3}{e}\right) + \left(\frac{3}{e}\right)^2 - \left(\frac{3}{e}\right)^3 + \cdots$$

EXAMPLE

Determine whether the given series are convergent. If so, find the sum.

$$(A) \sum_{n=0}^{\infty} \frac{3}{4^n}$$

$$(B) \qquad \sum_{n=0}^{\infty} \frac{1}{2^n} + \frac{5}{3^n}$$

(c)
$$\frac{1}{9} - \frac{1}{3} + 1 - 3 + 9 - \cdots$$