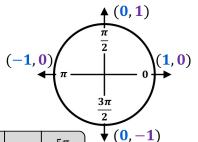
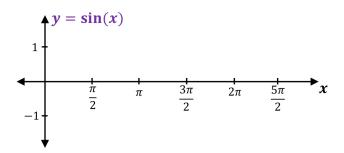
Graphing Sine & Cosine (with Vertical Shifts)

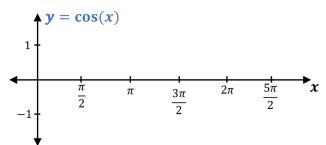
- ◆ Sine & Cosine values _____ around the unit circle, so their graphs are _____.
 - ▶ The high points are "crests" or ______; the low points are "troughs" or _____.



x	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π	$\frac{5\pi}{2}$
sin x						

x	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π	$\frac{5\pi}{2}$	♦ (0 , −:
cos x							





- ◆ Just as we've vertically shifted functions, we can also vertically shift sin & cos by adding a constant ____.
 - ▶ For positive **k**, graph shifts **[UP | DOWN]**; for negative **k**, graph shifts **[UP | DOWN]**.

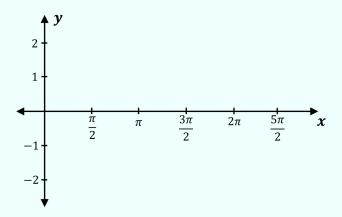
Recall Transformations g(x) = f(x) + k

$$y = \sin(x) + \underline{\hspace{1cm}}$$

$$y = \cos(x) + \underline{\hspace{1cm}}$$

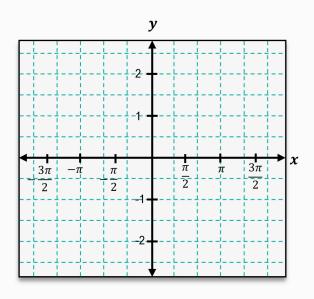
EXAMPLE

Graph the function $y = \sin(x) + 1$.



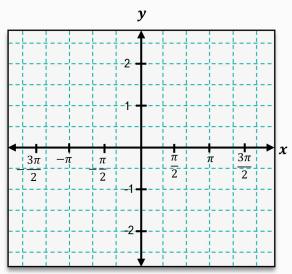
PRACTICE

Sketch the function $y = \cos(x) - 1$ on the graph below.



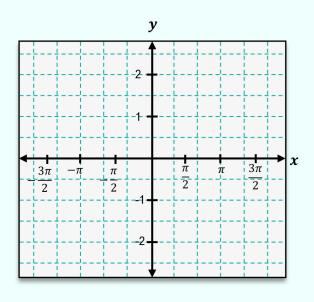
PRACTICE

Determine the value of $y = \sin\left(-\frac{\pi}{2}\right) + 50$ without using a calculator or the unit circle.



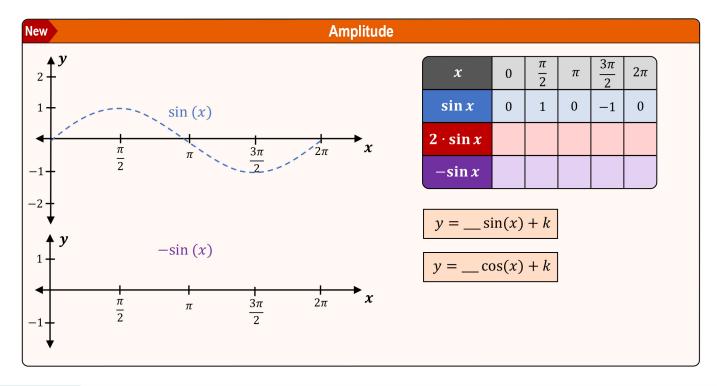
EXAMPLE

Graph the function $y = \sin(x) + 3$.



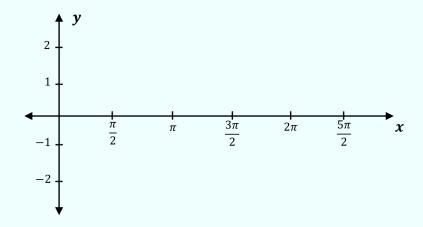
Amplitude & Reflection of Sine & Cosine

- ◆ Recall: Sine & Cosine graphs are repeating waves.
 - ► Amplitude: # affecting how _____ the peaks are, i.e. the distance from the midline to the peaks or valleys.
 - ▶ If the amplitude is negative, the graph is _____ over the x-axis.



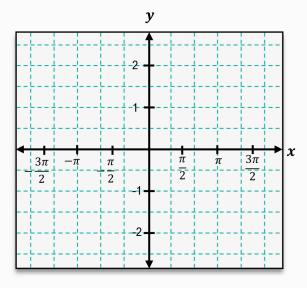
EXAMPLE

Graph the function $y = -\frac{3}{2} \cdot \cos x$



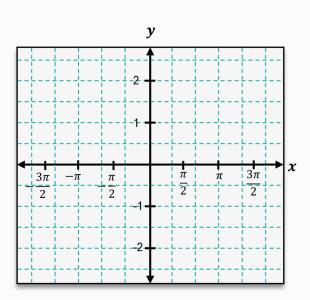
PRACTICE

Determine the value of $y=-2\cdot\sin\left(-\frac{3\pi}{2}\right)+10$ without using a calculator or the unit circle.



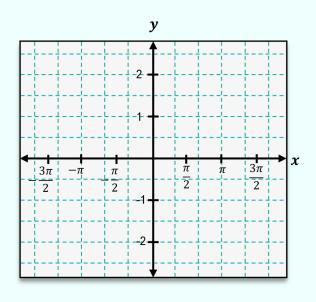
PRACTICE

Graph the function $y = -3 \cdot \cos(x)$.



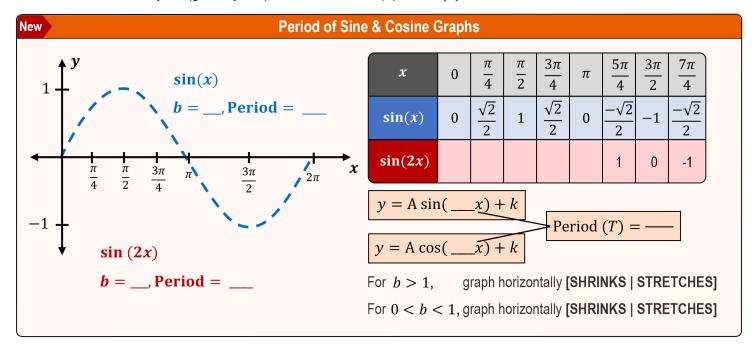
EXAMPLE

Graph the function $y = 2 \cdot \sin(x) - 1$.



Period of Sine & Cosine

- lacktriangle Period: How "_____" the graph is, i.e. the distance (along x) of a full wave or cycle.
 - Period is modified by a # (given by ____) in front of x in $\sin(x)$ or $\cos(x)$.



EXAMPLE

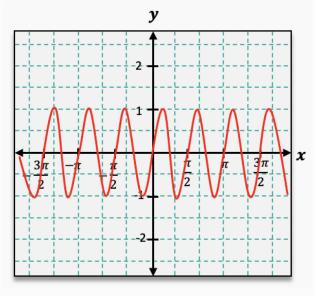
Without graphing, calculate the period of the following functions.

$$y = \sin\left(\frac{1}{2}x\right)$$

$$y = \cos(4\pi x)$$

PRACTICE

Given below is the graph of the function $y = \sin(bx)$. Determine the correct value for b.

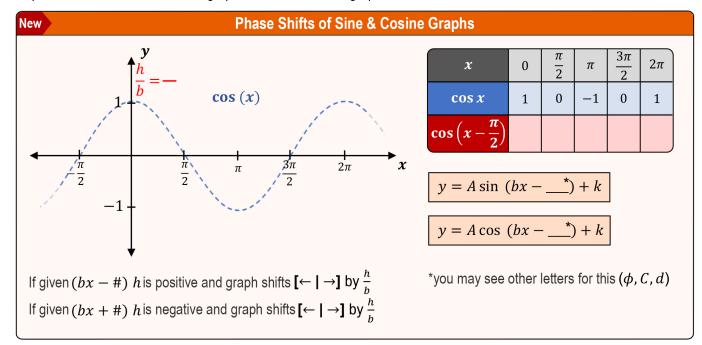


PRACTICE

The period for the function $y = \cos(bx)$ is $T = 20\pi$. Determine the correct value for b.

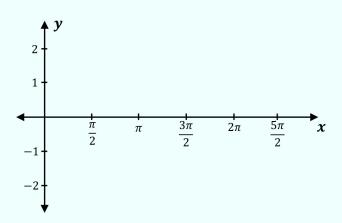
Phase Shifts

- ◆ Phase shift (h): a _____ shift (left/right), indicated by numbers [INSIDE | OUTSIDE] parentheses.
 - ▶ A phase shift can make a *cosine* graph look like a _____ graph.



EXAMPLE

Graph $y = \sin(2x + \pi)$ over one full period.



PRACTICE

Describe the phase shift for the following function: $y = \cos(5x - \frac{\pi}{2})$

PRACTICE

Describe the phase shift for the following function: $y = \cos(2x + \frac{\pi}{6})$

EXAMPLE

Graph the function $y = 3 \cdot \sin(x + \pi)$.

