MASTER TABLE: TRIGONOMETRIC IDENTITIES

lacktriangle NOTE: This table spans multiple videos.

TRIG IDENTITIES			
Name	Identity	Example	Use when
Reciprocal	$\csc \theta = \frac{1}{\sin \theta}$ $\sec \theta = \frac{1}{\cos \theta}$	$\sec\frac{\pi}{3} = \frac{1}{\cos\frac{\pi}{3}} = \frac{1}{\left(\frac{1}{2}\right)} = 2$	
	$\cot \theta = \frac{1}{\tan \theta}$		You need to rewrite an expression in terms of sin & cos
Quotient	$\tan \theta = \frac{\sin \theta}{\cos \theta}$ $\cot \theta = \frac{\cos \theta}{\sin \theta}$	$\tan\frac{\pi}{4} = \frac{\sin\frac{\pi}{4}}{\cos\frac{\pi}{4}} = \frac{\left(\frac{\sqrt{2}}{2}\right)}{\left(\frac{\sqrt{2}}{2}\right)}$	tornio di sili di cos
Even – Odd	$\cos(-\theta) = \underline{\qquad} \cos \theta$ $\sin(-\theta) = \underline{\qquad} \sin \theta$ $\tan(-\theta) = \underline{\qquad} \tan \theta$	$\cos\left(-\frac{\pi}{4}\right) = \\ \csc\left(\frac{\pi}{6}\right) =$	argument is
Pythagorean	$\sin^2 \theta + \cos^2 \theta = 1$ $\underline{ \theta + \underline{ \theta} = \underline{ \theta}}$	$\sin^2 \frac{11\pi}{6} + \cos^2 \frac{11\pi}{6} =$	you see trig functions
Sum & Diff.	$\sin(a \pm b) = \underline{\qquad} a \underline{\qquad} b \pm \underline{\qquad} a \underline{\qquad} b$ $\cos(a \pm b) = \underline{\qquad} a \underline{\qquad} b \mp \underline{\qquad} a \underline{\qquad} b$ $\tan(a \pm b) = \frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}$	$\sin\left(\frac{\pi}{2} + \frac{\pi}{6}\right) =$	argument contains a/ OR multiples of 15° or $\frac{\pi}{12}$
Double Angle	$\sin 2\theta = 2\underline{\hspace{1cm}}$ $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ $= 1 - 2\sin^2 \theta$ $= 2\cos^2 \theta - 1$ $\tan 2\theta = \frac{2\tan \theta}{1 - \underline{\hspace{1cm}}^2 \theta}$	$\cos^2\frac{\pi}{12} - \sin^2\frac{\pi}{12} =$	argument contains OR you recognize a of the identity

Even & Odd Identities

• If you know a function is **even** or **odd**, you can easily find $f(\underline{\hspace{1cm}})$.

◆ An **identity** is an equation which is TRUE for _____ possible values.

TRIG IDENTITIES			
Name	Identity	Example	Use when
	$\cos(-\theta) = \underline{\qquad} \cos\theta$	$\cos\left(-\frac{\pi}{4}\right) =$	argument is
Even – Odd	$\sin(-\theta) = \underline{\qquad} \sin \theta$	$\csc\left(-\frac{\pi}{6}\right) =$	
	$\tan(-\theta) = \underline{\qquad} \tan \theta$		

EXAMPLE

Use the even/odd identities to rewrite the expression with no negative arguments in terms of one trig function.

 $(A) - \tan(-\theta)$

 $\frac{\sin(-\theta)}{\cos(-\theta)}$

Recall $\sin(-\theta) = -\sin\theta$ $\cos(-\theta) = \cos\theta$ $\tan(-\theta) = -\tan\theta$ (Even – Odd Identities)

PRACTICE

Use the even-odd identities to evaluate the expression.

(A) $\cos(-\theta) - \cos\theta$

(B) $-\cot(\theta) \cdot \sin(-\theta)$

PRACTICE

Use the even-odd identities to evaluate the expression.

(A)

$$\sec\left(-\frac{4\pi}{5}\right)$$

$$\cos \frac{4\pi}{5}$$

$$-\cos\frac{4\pi}{5}$$

$$\sec \frac{4\pi}{5}$$

$$\cos\frac{4\pi}{5} \qquad -\cos\frac{4\pi}{5} \qquad \sec\frac{4\pi}{5} \qquad -\sec\frac{4\pi}{5}$$

Recall

$$\sin(-\theta) = -\sin\theta$$

$$\cos(-\theta) = \cos\theta$$

$$\tan(-\theta) = -\tan\theta$$

$$(B)$$
 $\sin(-38^\circ)$

$$-\sin 38^{\circ}$$
 $-\sin(-38^{\circ})$

Pythagorean Identities

- ◆ You'll need the **Pythagorean Identities** to simplify expressions with ______ trig functions.
 - ▶ These identities come from combining the Pythagorean Theorem with the Unit Circle.

$$a^2 + b^2 = c^2$$
$$y^2 + x^2 = 1$$

TRIG IDENTITIES			
Name	Identity	Example	Use when
Pythagorean	$\sin^2\theta + \cos^2\theta = 1$	$\sin^2 \frac{11\pi}{6} + \cos^2 \frac{11\pi}{6} =$	you see trig functions
	θ + =θ		squared.
	+θ=θ		

◆ To rewrite trig expressions, you'll need to recognize different _____ of the Pythagorean Identities.

EXAMPLE

Use the Pythagorean Identities to rewrite the expression as a single term.

(A)
$$\sec^2 \theta - \tan^2 \theta$$

$$(B) \qquad (1 - \cos \theta)(1 + \cos \theta)$$

EXAMPLE

Use the Pythagorean Identities to rewrite the expression as a single term.

 $1 + \cos \theta$

Recall $\sin(-\theta) = -\sin\theta$ $\cos(-\theta) = \cos\theta$ $\tan(-\theta) = -\tan\theta$ (Even – Odd Identities)

PRACTICE Use the Pythagorean Identities to rewrite the expression as a single term.

 $(1 + \csc\theta)(1 - \csc\theta)$

PRACTICE

Use the Pythagorean Identities to rewrite the expression with no fraction.

$$\frac{1}{1-\sec\theta}$$

Sum and Difference of Sine & Cosine

◆ The sum & difference identities are useful when you have multiple angles in the argument of a trig function.

	TRIG IDENTITIES				
Name	Identity		Example	Use when	
Sum & Difference	$\sin(a+b) = \underline{\qquad} a \underline{\qquad} b \underline{\qquad} a$	$ \sin\left(\frac{\pi}{2} + \frac{\pi}{6}\right)$	$\sin\left(\frac{\pi}{2} + \frac{\pi}{6}\right) OR \sin(90^\circ + 30^\circ)$	argument	
	$\sin(a-b) = \sin a \cos b \qquad \cos a \sin a \cos b$	in b		contains a /	
	$\cos(a+b) = \underline{\qquad} a \underline{\qquad} b \underline{\qquad} a \underline{\qquad}$	b		OR multiples of	
	$\cos(a-b) = \cos a \cos b \qquad \sin a = 0$	sin b		15° or $\frac{\pi}{12}$	

◆ To find exact values of trig functions NOT on the unit circle, rewrite argument as sum or diff. of 2 KNOWN angles.

EXAMPLE

Find the exact value of the function.

 $\cos 15^{\circ}$

EXAMPLE

Rewrite each argument as the sum or difference of two angles on the unit circle.

(A) sin(75°)

(B) $\cos(-15^\circ)$

 $\cos\left(\frac{7\pi}{12}\right)$

PRACTICE

Find the exact value of the expression.

(A) $\cos 105^{\circ}$

Recall

 $\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$ $\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$ (Sum/Difference Identities)

(**B**) sin 15°

 $\cos\frac{5\pi}{12}$

EXAMPLE

Find the exact value of the expression.

 $\sin 10^{\circ} \cos 20^{\circ} + \sin 20^{\circ} \cos 10^{\circ}$

Recall

 $\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$ $\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$ (Sum/Difference Identities)

PRACTICE

Find the exact value of the expression.

 $\cos 80^{\circ} \cos 20^{\circ} + \sin 80^{\circ} \sin 20^{\circ}$

EXAMPLE

Expand the expression using the sum & difference identities and simplify.

(A) $\sin(\theta + 30^\circ)$

Recall

 $\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$ $\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$ (Sum/Difference Identities)

 $(B) \qquad \cos\left(\frac{\pi}{4} - \theta\right)$

PRACTICE

Expand the expression using the sum & difference identities and simplify.

$$\sin\left(-\theta-\frac{\pi}{2}\right)$$

Double Angle Identities

◆ When the sum identities are used with the *same* two angles, we get the **double angle identities**.

	TRIG IDENTITIES			
Name	Identity	Example	Use when	
Sum & Diff.	$\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$ $\sin(\theta + \theta) = \sin \theta \cos \theta + \cos \theta \sin \theta$			
Double Angle	$\sin 2\theta = 2\underline{\hspace{1cm}}$	$\cos^2\frac{\pi}{12} - \sin^2\frac{\pi}{12} =$	argument contains	
	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ $= 1 - 2\sin^2 \theta$ $= 2\cos^2 \theta - 1$		OR you recognize a	
	$\tan 2\theta = \frac{2\tan \theta}{1 - \underline{\qquad}^2 \theta}$		of the identity	

◆ To simplify expressions & verify identities, you'll need to recognize different **forms** of the Double Angle Identities.

EXAMPLE

Simplify the expression, do not evaluate.

 $\sin 15^{\circ} \cos 15^{\circ}$