Intro to Frequency Distributions

◆ Frequency Distribution: A table showing frequency vs. chosen ______ of numbers or labels ("classes").

EXAMPLE

The data below lists the amount of time (in minutes) students spent studying for their exam each week. Construct a frequency distribution using 6 evenly-spaced classes, and calculate their relative frequencies.

		Time s	pent s	tudyii	ng (mi	ns) fo	r exan)	
20	30	35	40	40	45	50	55	65	75

Frequency Distribution Lower class limit: _____ # in each class Relative freq. **Time spent** Frequency studying (mins) $\left(\frac{f}{}\times 100\%\right)$ **(f)** for exam Upper class limit: # in each class 20 - 2930 - 39Class Midpoint: # in each class $\left(\frac{lower + upper}{2}\right) =$ 40 - 4950 - 5960 - 69Class width: Difference btwn 2 _____ lower 70 - 79OR upper class limits (**NOT** upper – lower)

◆ A *Relative* Freq. Distribution shows those frequencies as ______ of TOTAL # of measurements, *n*.

PRACTICE

Use the frequency distribution below to find the class width and class midpoints.

Travel Time to Work (mins)	Frequency (f)						
5 – 15	156						
16 – 26	343						
27 – 37	249						
38 – 48	172						
49 – 59	98						
60 – 70	56						
71 – 81	40						

PRACTICE

The following data set shows the number of overtime hours that 12 employees worked in a month. Construct a frequency distribution, using a lower class limit of 3 and a class width of 4.

				Overti	me Ho	ours W	/orked				
3	8	5	12	14	7	9	15	6	10	13	4

EXAMPLE

At a café one day, you count how many customers are served each hour over 14 hours. Construct a frequency distribution table using a lower class limit of 15 and a class width of 5. Calculate the relative frequencies of each. What percentage of the day is the café serving **30 or more** customers per hour?

				Cı	ustom	ers Se	rved p	er Ho	ur				
15	24	30	21	27	35	32	31	38	41	26	33	36	40

How to Create Frequency Distributions

◆ You may have to create frequency distributions given *only* the # of classes (usually 5-20), but *not* the class limits.

EXAMPLE

The data below lists the amount of time (in minutes) students spent studying for their exam each week. Construct a frequency distribution with 8 classes.

	Time spent studying for exam (mins)																		
5	15	20	24	35	35	40	45	50	50	52	55	60	63	65	72	80	85	95	115

Time spent studying (mins) for exam	Frequency (f)

HOW TO: Create Freq. Distributions

- 1) Calculate class width: $\frac{max min}{\# of \ classes}$, round up to nearest whole # OR convenient #
- 2) Find lower class limits:

1st Lower: # ≤ data minimum

Next Lowers: Prev. Lower + class width

3) Find upper class limits:

1st Upper: 2nd Lower - 1

4) Find f for each class, tally each data value

in its appropriate class

EXAMPLE

The data below shows the sales (in dollars) for 15 sales representatives at a company. Construct a frequency distribution using 5 classes.

						Sa	ales (in	\$)						
1223	1136	819	1089	1011	997	973	1025	1017	1118	988	843	1196	1081	942

HOW TO: Create Freq. Distributions

- 1) Calculate class width: $\frac{max min}{\# of \ classes}$, round up to nearest whole # OR convenient #
- 2) Find lower class limits:

1st Lower: # ≤ data minimum

Next Lowers: Prev. Lower + class width

3) Find upper class limits:

1st Upper: 2nd Lower - 1

4) Find f for each class, tally each data value

in its appropriate class

PRACTICE

An economist is analyzing the monthly unemployment rates (as a %) across different cities. The lowest was 16%, and the highest was 71%. Without constructing a table, find the class width if this data is divided into 7 classes. Then write the lower and upper class limits for each class.