TOPIC: CHI-SQUARE INDEPENDENCE TEST

Independence Test

- ◆ Recall: Two variables are **Independent** if neither one affects the other.
 - ► An **Independence Test** is a G.O.F. Test where "claimed" dist. = E's of the ____ variables (assumed *independent*).

EXAMPLE

Using the following data of the heights of students at a local high school, you find $\chi^2=3.32$. Test if height & grade are independent using $\alpha=0.05$.

	5'1-5'6	5'7-6'0	6'1-6'6
9th	0 = 40 E = 34.43	0 = 27	0 = 10
	E = 34.43	E = 29.17	E = 12.91
10th	0 = 32 E = 37.12	0 = 34	0 = 17
	E = 37.12	E = 31.45	E = 13.92

Recall	Goodness of Fit Test	New	Independence Test
1) Hypothesis	H_0 : Obs. freq's match claimed dist. H_a : Obs. freq's DO NOT match claimed dist.	H_0 : Variables a H_a : Variables a	are are
2) Test Stat	$E = \frac{n}{k} \text{ (claimed prob's SAME)}$ $E = np \text{ (claimed prob's DIFF)}$ $\chi^2 = \sum_{k=1}^{n} e^{-kx}$	$\frac{(O-E)^2}{E}$	$E = \frac{row\ total \cdot col\ total}{Grand\ Total}$ $\chi^2 = 3.32$
3) P-value	df = k - 1 $P-value = Are$	χ^2 a "beyond" χ^2	$df = (r-1)(c-1)$ $df = \underline{\qquad} r = \text{\# of rows}$ $c = \text{\# of columns}$
4) Conclusion	$P\text{-value} = \underline{\hspace{1cm}}$ Because P -value [< >] α , we [REJECT FAIL TO REJECT] H_0 . There is [ENOUGH NOT ENOUGH] evidence that the variables are dependent.		
Criteria	Random Samples? Observed freq. for $E \ge 5$ for each cate		

TOPIC: CHI-SQUARE INDEPENDENCE TEST

EXAMPLE

 $\chi^2 =$

P-value =

A retail store is testing two different promotional strategies (**Discount Coupon & Free Shipping**) to see which is more effective at encouraging purchases. Customers were randomly offered one of the two promotions. The store recorded whether each customer made a purchase or did not. At the 0.05 level of significance, is there evidence to suggest that customer response (purchase or not) is dependent on the type of promotion offered?

Random Samples?	
Observed freq. for each category?	
$E \ge 5$ for each category?	
H_0 :	
H_a :	

		Purchased?		
		Yes	No	Total
Promotion	Coupon	52	48	100
	Free Shipping	45	55	100
	Total	97	103	200

r = #rows =	c = #col's =	df = =

Recall
$$E = \frac{row \ total \cdot col \ total}{Grand \ Total}$$

$$\chi^2 = \sum \frac{(O - E)^2}{E}$$

$$df = (r - 1)(c - 1)$$

(Independence Test)

Because P-value [< | >] α , we [REJECT | FAIL TO REJECT] H_0 .

There is [ENOUGH | NOT ENOUGH] evidence to support ${\cal H}_a.$

The variables appear to be [INDEPENDENT | DEPENDENT].