TOPIC: MULTIPLE COMPARISONS: TUKEY-KRAMER

Tukey-Kramer Test

- ullet ANOVA compares 3+ means. If H_0 is rejected, **Post-hoc** tests can tell you which means are different.
 - ► Post-Hoc Tests, like **Tukey-Kramer**, test ______ of means against each other.

EXAMPLE

In an ANOVA test on mean weekly study time for different grade levels, you reject H_0 : Students in grades 10-12 study for the same amount of time. Determine which pair(s) of means are different with $\alpha=0.05$.

$$N =$$
_____ $k =$ ____ $df =$ _____ Critical Value = ____ $MSE =$ _____

Grade	10	11	12
Study Time	3	4.3	6
Sample Size	10	10	10

10 th & 11 th Grade	11 th & 12 th Grade	10 th & 12 th Grade	
H_0 :	H_0 : $\mu_{11} = \mu_{12}$	$H_0: \mu_{10} = \mu_{12}$	
H_a :	$H_a \colon \mu_{11} \neq \mu_{12}$	$H_a: \mu_{10} \neq \mu_{12}$	
$q_0 =$	$q_0 =$	$q_0 =$	
$\frac{-}{\sqrt{\left(-\frac{2}{2}\right)\cdot\left(\frac{1}{2}+\frac{1}{2}\right)}}$	$\frac{-}{\sqrt{\left(\frac{4.448}{2}\right)\cdot\left(\frac{1}{10}+\frac{1}{10}\right)}}$	$\frac{-}{\sqrt{\left(\frac{4.448}{2}\right)\cdot\left(\frac{1}{10}+\frac{1}{10}\right)}}$	
q_0 [> <] Crit. Val. [REJECT FTR] H_0 .	q_0 [> <] Crit. Val. [REJECT FTR] H_0 .	q_0 [> <] Crit. Val. [REJECT FTR] H_0 .	

HOW TO: Perform Tukey-Kramer Test

- **1)** Verify: ANOVA H_0 was rejected? \square
- **2)** Crit. Val.: Studentized Range q-table df = N k N = # of total obs. k = # of groups
- 3) Get MSE from ANOVA readout

One-way ANOVA V Error

V Erroi MS=

For each pair of groups:

- **4)** $H_0: \mu_1 = \mu_2, \quad H_a: \mu_1 \neq \mu_2$
- **5)** Test Statistic: q_0
- **6)** Interpret: Compare q_0 & Crit. Val.

New $q_0 = \frac{\bar{x}_2 - \bar{x}_1}{\sqrt{\left(\frac{s^2}{2}\right) \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$ $s^2 = \text{MSE from one-way ANOVA}$

TOPIC: MULTIPLE COMPARISONS: TUKEY-KRAMER

EXAMPLE

A nutritionist wants to compare the effectiveness of three different diet plans (Diet A, Diet B, and Diet C) in terms of weight loss over a 6-week period. She randomly assigns 15 participants to one of the three diet groups, with 5 participants per group. After 6 weeks, the amount of weight (in pounds) lost by each participant is recorded. A one-way ANOVA test showed that at least one plan led to a different average weight loss. Perform a Tukey-Kramer Test using $\alpha=0.05$ to see which pair(s) of means are different.

Plan	Weight Loss (lbs)					
A	8	9	6	10	7	
В	4	5	6	5	4	
С	10	12	9	11	13	

$$q_0 = \frac{\bar{x}_2 - \bar{x}_1}{\sqrt{\left(\frac{s^2}{2}\right) \cdot \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$