
TOPIC: CHI-SQUARE HOMOGENEITY TEST

Homogeneity Test

- ◆ Two or more populations are **Homogeneous** if they have the same ______ of some characteristic.
 - ► **Homogenity Tests** use the *same* steps & math as independence tests with *different* hypotheses & conclusions.

EXAMPLE

Test if the proportion of car ownership is the same for the different age groups, using a test statistic $\chi^2 = 50$, and $\alpha = 0.05$.

TOPIC: CHI-SQUARE HOMOGENEITY TEST

EXAMPLE

A pharmecutical company is testing the effectiveness of a new ADHD medication. At the 0.05 level of significance, test whether there is a difference in the distribution of symptom improvement between the placebo group and the group that received the new drug.

Random Samples? Observed freq. for each category? $E \geq 5$ for each category? H_0 :

		Group		
		Placebo	Non-Placebo	Total
Symptoms	Improved	18	37	55
	Not Improved	30	15	45
	Total	48	52	100

 H_a :

$$\chi^2 =$$

$$r = \#rows =$$
___ $c = \#col's =$ ___ $df =$ ___ $=$ __

Because P-value [< | >] α , we [**REJECT** | **FAIL TO REJECT**] H_0 .

P-value =

Recall $E = \frac{row\ total \cdot col\ total}{}$ Grand Total $\chi^2 = \sum \frac{(O-E)^2}{E}$ df = (r-1)(c-1)(Homogeneity Test)

There is [ENOUGH | NOT ENOUGH] evidence that there is a difference in proportion of symptom improvement between the placebo group and the group that received the new drug.