TOPIC: BASIC CONCEPTS OF PROBABILITY

Introduction to Probability

- ullet How likely an event is to happen is called the **probability** of the event, written as P(event)
 - In general, $P(event) = \frac{\text{# of times event occurs}}{TOTAL}$

Theoretical Probability

Empirical (Experimental) Probability

Toss #	1	2	3
Result	Τ	Н	Н

$$P(heads) =$$

- ▶ Based on what [COULD | DID] happen
- Calculated [BEFORE | AFTER] events occur

$$P(event) = \frac{\text{# of outcomes with event}}{\text{# of TOTAL possible outcomes}}$$

P(heads)	
rineausi	

- ▶ Based on what [COULD | DID] happen
- Calculated [BEFORE | AFTER] events occur

$$P(event) = \frac{\text{# of times event occured}}{TOTAL \text{# of trials}}$$

EXAMPLE

When rolling a six-sided die, what is the probability of rolling a number greater than 3?

EXAMPLE

The table below shows the results of rolling a six-sided die 10 times. Given that data, what is the probability of rolling a number greater than 3?

Roll	1	2	3	4	5	6	7	8	9	10
Outcome	6	4	2	5	5	5	6	1	4	5

- ◆ You may see the possible outcomes of an event expressed as a set, referred to as a **sample space**.
 - For example, the **sample space** of flipping a coin is $S = \{\underline{\hspace{1cm}}\}$

TOPIC: BASIC CONCEPTS OF PROBABILITY

PRACTICE

Given the data below, determine the probability that a person randomly selected from Group 1 will be wearing jeans.

	Group 1	Group 2	Group 3
Wearing Jeans	68	27	17
Not wearing jeans	63	36	89

PRACTICE

In your coin purse, you have 3 quarters, 4 nickels, & 2 dimes. If you pick a coin at random, what is the probability that it will be a quarter?