
Derivatives Applied to Velocity

- ◆ The motion of an object over time is often described using its position function _____ & velocity function _____.
 - ► Velocity = change in position (displacement) over time:

v(t) = ----

EXAMPLE

Given an object's position s(t) in meters, find the missing values based on the time interval $0s \le t \le 2s$.

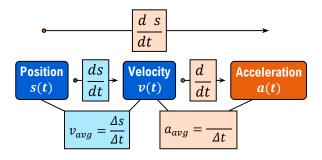
PRACTICE

Given the position equation s(t), calculate the *average* velocity (in meters per second) based on the given time interval, and the *instantaneous* velocity (in meters per second) at the end of the time interval.

$$s(t) = 9t - t^2, \quad 0 \le t \le 3$$

PRACTICE

Given the position equation s(t), calculate the *average* velocity (in meters per second) based on the given time interval, and the *instantaneous* velocity (in meters per second) at the end of the time interval.


$$s(t) = \frac{30}{t+5}, \qquad -4 \le t \le 0$$

EXAMPLE

The height (in meters) of a projectile shot vertically upward from a point 5 m above ground level with an initial velocity of $20 \frac{m}{s}$ is $h(t) = 5 + 20t - 4.9t^2$. (A) What is the vertical velocity at t = 3 seconds? (B) When does the projectile reach its maximum height? (C) What is the maximum height of the projectile?

Derivatives Applied to Acceleration

ullet Acceleration (a) is the *change* in velocity over time, i.e. the _____ deriv. of v(t) and _____ deriv. of s(t).

EXAMPLE

Given the velocity function $v(t) = t^3 - 3t^2 + 2t$ in meters per second, answer the following based on the time interval $0s \le t \le 3s$.

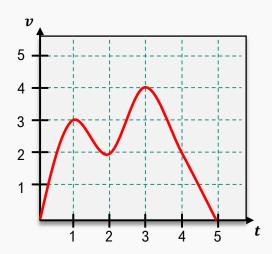
(A) What is the change in velocity?

$$\Delta v = \underline{\hspace{1cm}}$$

(B) What is the average acceleration?

$$a_{avg} =$$

(C) What is the instantaneous acceleration at the end of the time interval?


$$a(\underline{\hspace{0.1cm}})=\underline{\hspace{0.1cm}}$$

PRACTICE

Given the position of an object $s(t) = 12t - t^2$ (in meters) find the acceleration of the object at t = 5 seconds.

PRACTICE

Given below is the graph of velocity with respect to time. At which time(s) would acceleration be 0?

EXAMPLE

The height (in meters) of a projectile shot vertically upward from ground level with an initial velocity of $15\frac{m}{s}$ is $h(t) = 15t - 4.9t^2$. (A) What is the vertical velocity at t = 3 seconds? (B) What is the vertical acceleration at t = 3 seconds? (C) If the maximum height of the projectile is 11.5 m, when will the projectile initially reach half of its maximum height?