Introduction to Cross Sections

- ◆ Recall: To find area, add the area of many small rectangles. To find volume, add the volume of many thin slices.
 - ► Volume of slice = Area of Cross Section width. A cross section is a 2D shape we get from cutting a 3D solid.

EXAMPLE

Set up an int. for the volume of a solid with base $f(x) = 4 - x^2$ on [0, 2] with square cross sections.

◆ ALWAYS sketch the solid and a front facing cross section.

EXAMPLE

Find the volume of a solid with base $f(x) = 4 - x^2$ on [0, 2], with square cross sections.

Recall
$$Volume = \int_{a}^{b} A(x) dx$$

PRACTICE

Find the volume of the solid whose base is the region bounded by the function $f(x) = \sqrt{9 - x^2}$ and the x-axis with square cross sections perpendicular to the x-axis.

Recall
$$Volume = \int_{a}^{b} A(x) dx$$

EXAMPLE

Set up an integral for the volume of a solid with base: $y = 4 - x^2$ on [0,2] & cross sections in the following shapes, parallel to the y-axis.

(A) CS =Isosceles Right Triangles

Recall
$$Volume = \int_{a}^{b} A(x) dx$$

(B) CS = Circles

PRACTICE

Find the volume for a solid whose base is the region between the curve $y = \sqrt{\sin x}$ and the *x*-axis on the interval from $[0, \pi]$ and whose cross sections are equilateral triangles with bases parallel to the *y*-axis.

Finding Volume Using Disks

◆ Recall: To find volume of a 3D solid, integrate the area function of a cross section.

Recall
$$Volume = \int_{a}^{b} A(x) dx$$

- ► A **Solid of Revolution** is a solid formed by revolving a curve around an axis (x-axis, y-axis, y = 2, etc.).
- ► The cross sections of a solid of rev. are _____ (disks) whose radius = the dist. from the _____ to the ____.

EXAMPLE

Set up an int. for the volume of a solid formed by rotating $f(x) = 4 - x^2$ on [-2,2] about the *x*-axis.

EXAMPLE

Find the volume of the solid formed by rotating $f(x) = 4 - x^2$ on [-2,2] about the *x*-axis.

Recall
$$Volume = \int_{a}^{b} \pi [R(x)]^{2} dx$$

EXAMPLE

Set up an integral that represents the volume of the solid of revolution formed by rotating the area between $f(x) = 4 - x^2$ & y = 2 around the line y = 2.

Recall
$$Volume = \int_{a}^{b} \pi [R(x)]^{2} dx$$

PRACTICE

Find the volume of the solid obtained by rotating the region bounded by y = x + 4, y = 0, x = 1 & x = 5 about the x-axis.

Disk Method Using y-Axis

- ◆ Recall: To find volume of a solid of revolution, integrate the area function of circular cross section.
 - ► When revolving around y-axis, 1) write fcn in terms of ____, 2) find _____ & _____, 3) integrate w.r.t. ____.

EXAMPLE

Set up an int. for the volume of a solid formed by rotating $f(x) = 4 - x^2$ on [0,2] about the *y*-axis.

EXAMPLE

Find the volume of a solid formed by rotating $f(x) = 4 - x^2$ on [0,2] about the *y*-axis.

Recall
$$Volume = \int_{c}^{d} \pi [R(y)]^{2} dy$$

EXAMPLE

Find the volume of the solid of revolution formed by rotating the area between $f(x) = 4 - x^2$, y = 4, & x = 2 in Q1 around the line x = 2.

Recall
$$Volume = \int_{c}^{d} \pi [R(y)]^{2} dy$$

PRACTICE

Find the volume of the solid formed by revolving the area bounded by $f(x) = x^2$ from x = 0 to x = 3 and the *y*-axis around the *y*-axis.

Recall
$$Volume = \int_{c}^{d} \pi [R(y)]^{2} dy$$