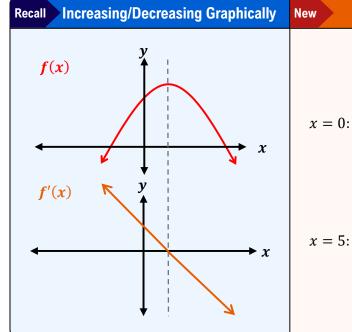
Determining Where a Function Is Increasing & Decreasing

- ◆ Recall: Looking at a graph from left to right, a function is increasing if it goes up & decreasing if it goes down.
 - ► Given a function, find where it is **increasing** or **decreasing** based on the _____ of the _____.

EXAMPLE

Using the derivative, determine if f(x) is increasing or decreasing at x = 0 & x = 5.



Increasing/Decreasing Using Derivative

$$f(x) = -x^2 + 4x + 5$$

If
$$f'$$
 is $[+|-]$, f is $[]$ INC $[]$ DEC $[]$

If
$$f'$$
 is $[+|-]$, f is $[]$ INC $|]$ DEC $]$

EXAMPLE

Determine the intervals for which f(x) is increasing or decreasing.

$$f(x) = -x^2 + 4x + 5$$

\leftarrow x

HOW TO: Determine Intervals of Increase & Decrease

1) Find critical points:

$$f'(x) = 0$$
 or $f'(x)$ DNE

- 2) Make sign chart ______ based on critical points
- **3)** Plug value from each int. into f':

If +, f _____ on interval

If -, f _____ on interval

PRACTICE

Identify the open intervals on which the function is increasing or decreasing.

(A)
$$f(x) = 3x^4 + 8x^3 - 18x^2 + 7$$

HOW TO: Determine Intervals of Increase & Decrease

1) Find critical points:

$$f'(x) = 0$$
 or $f'(x)$ DNE

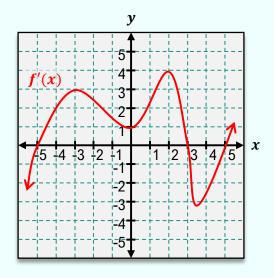
- **2)** Make sign chart **intervals** based on critical points
- 3) Plug value from each int. into f':If +, f INC on intervalIf -, f DEC on interval

(B)
$$f(x) = x^{2/3} (4 - x)$$

(C)
$$f(x) = \sin^2 x \text{ on } [0, \pi]$$

EXAMPLE

Identify the open intervals where f(x) is increasing or decreasing based on the graph of f'(x).



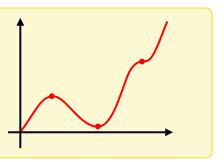
The First Derivative Test: Finding Local Extrema

- ♦ Recall: The sign of the derivative tells us whether a function is increasing (f') is +) or decreasing (f') is -).
 - ► Local extrema occur where the sign of the derivative f' _____.

First Derivative Test

Suppose c is a critical point of a continuous function f. If at c,

- f' changes from \longrightarrow , f has a local [MAX | MIN] at c.
- f' changes from \longrightarrow , f has a local [MAX | MIN] at c.
- f' does ____ change sign, f has ____ local extrema at c.



EXAMPLE

Locate the local extrema of the function $f(x) = x^3 - 3x^2 + 4$.

$$f'(x) = 3x^2 - 6x$$
$$= 3x(x - 2)$$

HOW TO: Find Local Extrema Using First Derivative Test

1) Find critical points:

$$f'(x) = 0$$
 or $f'(x)$ DNE

- **2)** Make sign chart intervals based on critical points
- **3)** Plug value from each int. into f' If f' changes from:

 $+ \rightarrow -$, crit. pt. is local **MAX**

 $- \rightarrow +$, crit. pt. is local **MIN**

4) If asked: Find **value** of max/min by plugging crit. pt. into _____

EXAMPLE

Identify the local minimum and maximum values of the given function, if any.

$$f(x) = (x+7)^3$$

HOW TO: Find Local Extrema Using First Derivative Test

1) Find critical points:

$$f'(x) = 0$$
 or $f'(x)$ DNE

- **2)** Make sign chart intervals based on critical points
- **3)** Plug value from each int. into f' If f' changes from:

$$+ \rightarrow -$$
, crit. pt. is local **MAX**

$$-\rightarrow$$
 +, crit. pt. is local **MIN**

4) If asked: Find **value** of max/min by plugging crit. pt. into f(x)

$$h(t) = \frac{t^3}{2t+1}$$

PRACTICE

Identify the local minimum and maximum values of the given function, if any.

$$f(\theta) = \sin \theta + \cos^2 \theta$$
 on $[0, \pi]$

HOW TO: Find Local Extrema Using First Derivative Test

1) Find critical points:

$$f'(x) = 0$$
 or $f'(x)$ DNE

- **2)** Make sign chart intervals based on critical points
- **3)** Plug value from each int. into f' If f' changes from:

$$+ \rightarrow -$$
, crit. pt. is local **MAX**

$$- \rightarrow +$$
, crit. pt. is local **MIN**

4) If asked: Find **value** of max/min by plugging crit. pt. into f(x)

EXAMPLE

Identify the global and local minimum and maximum values for the given function, if any.

$$f(x) = x^2 + 4x + 17$$