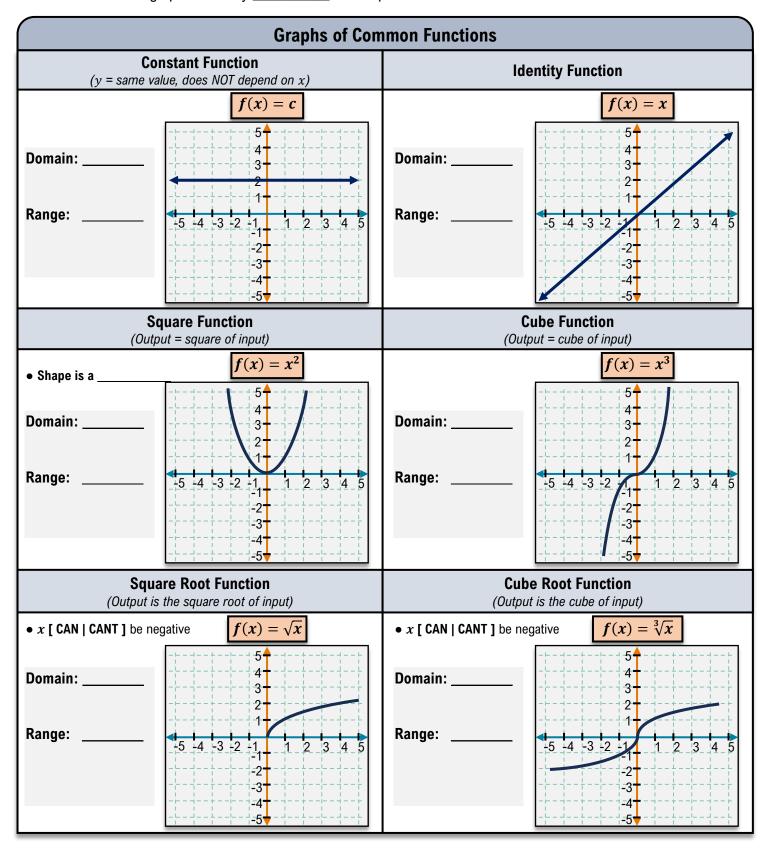
Graphs of Common Functions

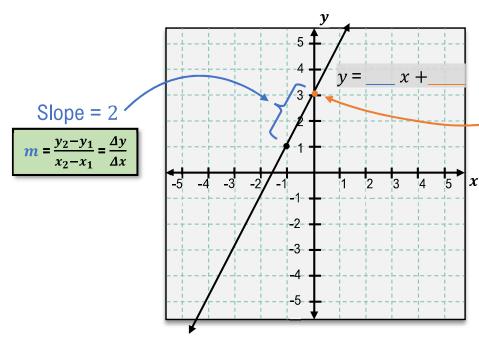
• There are several graphs that may _____ show up in this course.



Slope – Intercept Form

We can write the equation of a line using its _____ & _____

(Slope – Intercept Form)

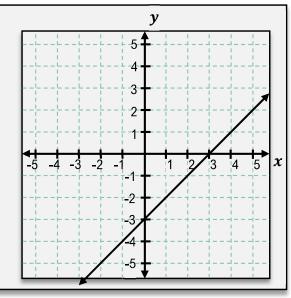


y – Intercept =

y – value where line crosses y – axis (x = 0)

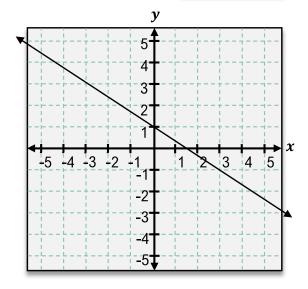
EXAMPLE: In the graph below, identify the y – intercept & slope.

Write the equation in slope-intercept form.



PRACTICE: In the graph shown, identify the y – intercept & slope. Write the equation of this line in Slope-Intercept form.

y = mx + b



TOPIC: QUADRATIC FUNCTIONS

Properties of a Parabola

• A quadratic function is a polynomial of degree ___ in the standard form: $f(x) = ax^2 + bx + c$

$$f(x) = x^2$$
 $f(x) = 2x^2 + 3x - 7$ $f(x) = \frac{2}{3}x^2 + 1$

- a, b, c can be any real number as long as $a \neq \underline{\hspace{1cm}}$.
- Recall: The square function is a ______, as *all* quadratic functions will be.

 f(x) = x²

 Vertex: _____ [MIN|MAX]

 x-intercept(s): _____

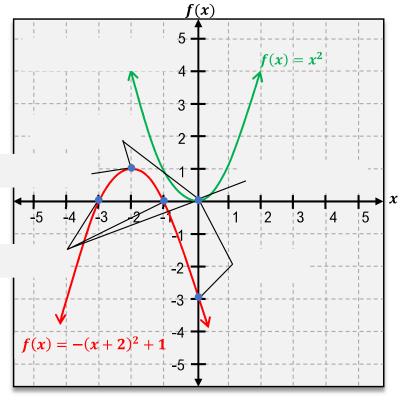
 y-intercept: ____

 Axis of Symmetry: ____

 Domain: always _____

 Range when [MIN], _____: ____

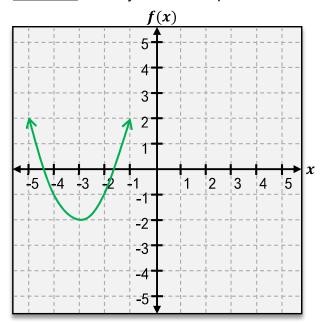
$f(x) = -(x+2)^2 + 1$		
Vertex: [MIN MAX]		
x-intercept(s):		
y-intercept:		
Axis of Symmetry:		
Domain:		
Range when [MAX],::		
Increasing?		
Decreasing?		



• Quadratic functions are commonly written in vertex form, which will help us graph with ease.

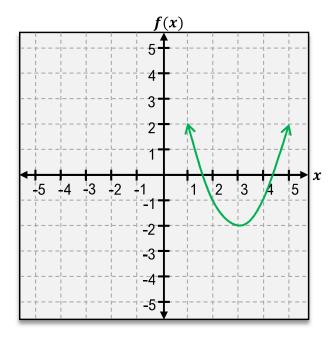
TOPIC: QUADRATIC FUNCTIONS

PRACTICE: Identify the ordered pair of the vertex of the parabola. State whether it is a minimum or maximum.



Vertex: _____ [MIN|MAX]

PRACTICE: Where is the axis of symmetry located on the given parabola?

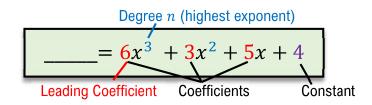


Axis of Symmetry: _____

TOPIC: UNDERSTANDING POLYNOMIAL FUNCTIONS

Intro to Polynomial Functions

- You will need to know how recognize polynomial functions & their graphs.
 - Recall: Polynomials have *only* positive whole number exponents (no negatives, no fractions)
 - Standard form: Like terms combined & in descending order of power $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$



EXAMPLE: Determine if each function is a polynomial function. If so, put in standard form. State degree & leading coeff.

(A)
$$f(x) = -x^2 + 5x^3 - 6x + 4$$

$$f(x) = -x^2 + 5x^3 - 6x + 4$$

Polynomial function? □ Degree:

Leading Coefficient: _____

$$f(x) = 2x^{\frac{1}{2}} + 3$$

Polynomial function? □ Degree:

Leading Coefficient: _____

 $f(x) = -\frac{2}{3}x^4 + 1 + 3$

Polynomial function? □ Degree:

Leading Coefficient:

Graphs of Polynomial Functions

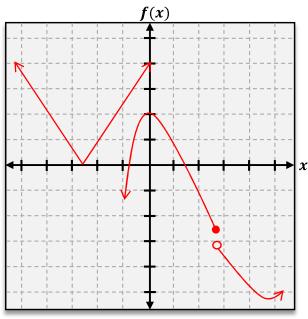
• Graphs of polynomial functions are _____ and ____ (no corners, no breaks)

Polynomial Functions

x

■ Domain: always

NOT Polynomial Functions



TOPIC: UNDERSTANDING POLYNOMIAL FUNCTIONS

<u>PRACTICE</u>: Determine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient.

$$f(x) = 4x^3 + \frac{1}{2}x^{-1} - 2x + 1$$

Polynomial function?

Degree:

Leading Coefficient:

<u>PRACTICE</u>: Determine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient.

$$f(x) = 2 + x$$

Polynomial function?

Degree:

Leading Coefficient:

<u>PRACTICE</u>: Determine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient.

$$f(x) = 3x^2 + 5x + 2$$

Polynomial function?

Degree:

Leading Coefficient: _____

Introduction to Rational Functions

- $f(x) = \frac{x^2 + 4x + 1}{3x + 2}$
- A rational function has a ______ in the numerator & denominator:
 - Recall: The denominator of a fraction CANNOT be _______.

Rational <i>Equation</i>	Rational <i>Function</i>
$12 = \frac{1}{x-1}$ $\neq 0$ Restriction: $x \neq $	$f(x) = \frac{1}{x-1}$ $\neq 0$ Domain: $\{x x \neq _\}$

- To determine domain, set denominator = 0 & solve for x. Domain is any real #, EXCEPT what makes denom = 0.
- To write a rational function in **lowest terms**, factor top & bottom, then _____ any common factors.
 - Always find the domain BEFORE writing in lowest terms.

EXAMPLE: Find the domain of the rational function. Then, write the function in lowest terms.

(A)

$$f(x) = \frac{3}{3x + 12}$$

$$f(x) = \frac{x+5}{x^2-25}$$

$$f(x) = \frac{x+5}{x^2-25}$$

<u>PRACTICE</u>: Find the domain of the rational function. Then, write it in lowest terms.

$$f(x) = \frac{x^2 + 9}{x - 3} \qquad \{x | x \neq \underline{\hspace{1cm}}\}$$

<u>PRACTICE</u>: Find the domain of the rational function. Then, write it in lowest terms.

$$f(x) = \frac{6x^5}{2x^2 - 8}$$

$$\{x \mid x \neq \underline{\hspace{1cm}}\}$$

TOPIC: INTRODUCTION TO EXPONENTIAL FUNCTIONS

Exponential Functions

- ◆ Polynomial functions have a variable base with a number exponent; exponential functions have the opposite!
 - Exponential functions have a:
 - ► Base that is _____, ____, & ____1.
 - **Exponent** (power) that contains a _____.

Recall	Polynomial Function	
	$f(x) = x^2$	

New	Exponential Function	
	Power	
	$f(x) = 2^{x}$ Power	
	Base	

EXAMPLE

Determine if each function is an exponential function.

 $f(x) = \left(\frac{2}{3}\right)^x$

Exponential function?

Power: _____

Base: _____

(**B**)

 $f(y) = 1^y$

Exponential function?

Power: _____

Base:

(**C**)

 $f(x) = 10^{x+1}$

Exponential function?

Power: _____

Base:

- ullet You will be asked to evaluate exponential functions for specified values of x.
 - For exponents that cannot easily be done by hand, type (BASE) (POWER) into a calculator.

EXAMPLE

Evaluate the exponential function $f(x) = 2^x$ for each given value of x.

$$(A) x = 4$$

$$(\mathbf{B})$$
 $x = -$

$$(\mathbf{C}) \qquad \qquad x = 3.14$$

$$x = 12$$

TOPIC: INTRODUCTION TO EXPONENTIAL FUNCTIONS

PRACTICE

Determine if each function is an exponential function. If so, identify the power & base, then evaluate for x = 4.

 (\mathbf{A})

$$f(x) = (-2)^x$$

Exponential function?

Power: _____

Base: _____

f(4) =_____

 (\boldsymbol{B})

$$f(x) = 3(1.5)^x$$

Exponential function?

Power: _____

Base: _____

f(4) =_____

(**C**)

$$f(x) = \left(\frac{1}{2}\right)^x$$

Exponential function?

Power: _____

Base: _____

f(4) =_____

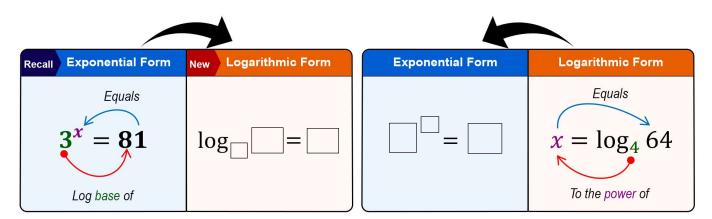
TOPIC: INTRODUCTION TO LOGARITHMS

Logarithms Introduction

- ◆ The _____ (inverse) operation of an exponential is taking the *logarithm* (log).
 - ▶ Logs and exponentials with the same base _____ each other.
 - ▶ A log gives us the power that some base must be raised to in order to equal a particular number.

Solving Polynomials		Solving Exponentials		
$x^{3} = 216$ $\sqrt[3]{x^{3}} = \sqrt[3]{216}$	$2^{x} = 8$ $2 \times 2 \times 2 = 8$		$2^x = 216$	(Exponential Form
$x = \sqrt[3]{216}$	x = 3		$x = \log$	(Logarithmic Form, "log base 2 of 216

◆ You will need to convert expressions between **exponential form** and **logarithmic form**.



EXAMPLE

Write each log in exponential form & each exponential in log form.

$$(\mathbf{A}) \qquad \qquad x = \log_5 800$$

$$\log_2 16 = 4$$

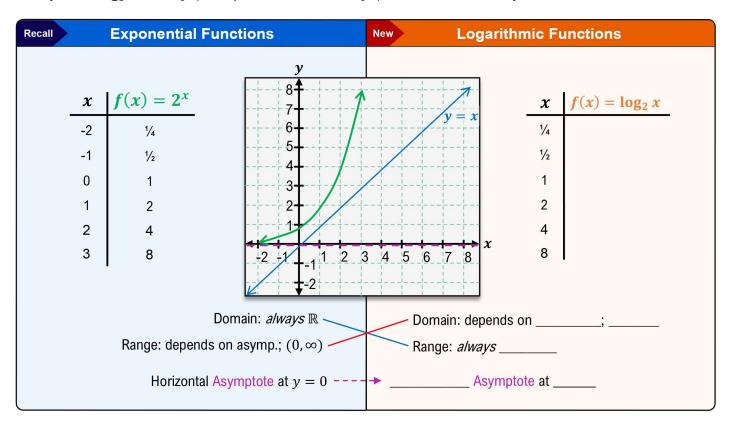
$$10^x = 4500$$

ullet \log_{10} , known as the _____ log, can be written as just ____ and has its own calculator button: LOG

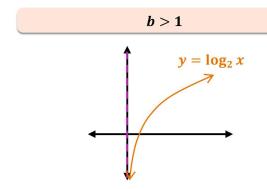
TOPIC: GRAPHING LOGARITHMIC FUNCTIONS

Graphs of Logarithmic Functions

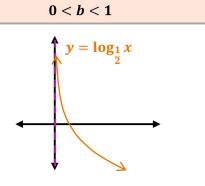
- ◆ We can graph a logarithmic function using the fact that it is the _____ of an exponential function.
 - $f(x) = \log_b x$ can be graphed by _____ the graph of its inverse function, $y = b^x$ over ____.



♦ Just like its inverse, the direction of the graph of $f(x) = \log_b x$ depends on ____.



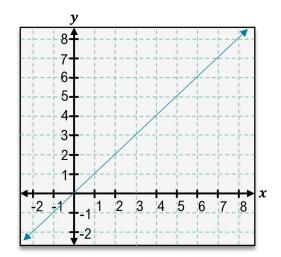
◆ Graph [INCREASES | DECREASES]



◆ Graph [INCREASES | DECREASES]

TOPIC: GRAPHING LOGARITHMIC FUNCTIONS

EXAMPLE: Graph $f(x) = 3^x$ and $g(x) = \log_3 x$ on the graph below. Determine the domain and range of each.



x	$f(x)=3^x$	x	$g(x) = \log_3 x$
-2			
-1			
0			
1			
2	-		

Domain: _____

Range: _____ Range: _____