
TOPIC: LINEARIZATION

Linear Approximation

- If you "zoom in" closely to **any** smooth fcn, we can approximate it with a _____, called a **linearization**, L(x).
 - ► L(x) is just the tangent line of f(x) at a specific value x = a.

EXAMPLE

Find the linearization L(x) of $f(x) = x^2$ at a = 1.

ullet Approximate f(x) at a specific x-value by plugging into L(x). The further it is from a, the less accurate the result.

EXAMPLE

Using the function $f(x) = x^2$ and linearization L(x) = 2x - 1, approximate f(1.05).

 $f(x) \perp L(x)$

Exact value: f(1.05) =_____

TOPIC: LINEARIZATION

PRACTICE

If $f(x) = x^3 + 1$, use the linearization L(x) at a = 5 to approximate f(5.1).

PRACTICE

If $f(x) = \sqrt{x} + 12$, use the linearization L(x) at a = 16 to approximate f(16.01).