Introduction to Work

- ◆ Work is done when a force is applied on an object over a distance.
 - ► Work is the area under the force curve. Units: Newton-meters (Joules) or foot-pounds.

EXAMPLE

Find the work done on the object by the force (in Newtons) F(x) from x = 1 m to x = 4 m.

Work Done by Constant Force Work Done by Variable Force Force (N)Force (N)25-25 F(x) = 22 $F(x) = x^2$ 20 20 15 15 10 10 5 5 x(m)x(m)Work =×

		A.	A-1	-0		_
12	R.	ΑW		ш	ш	31

How much work is required to push a chair across the floor with a force of $F=8\ lb$ from $x=6\ ft$ to $x=9\ ft$ along the x-axis?

PRACTICE

How much work is done by a person lifting a 10 lb bucket 4 ft off the ground?

PRACTICE

How much work is required to move an object with a force of $F(x) = 4x^3 N$ acting along the x-axis from x = 0 m to x = 2 m?

PRACTICE

Compute the work done by a force $F = \frac{3}{x^2} N$ from x = 2 m to x = 6 m.

Work Done on a Spring (Hooke's Law)

Recall: Work done by a force acting on an object from x = a to x = b is $W = \int_{a}^{b} F(x) dx$

Recall
$$W = \int_{a}^{b} F(x) \ dx$$

► The force required to compress/stretch a spring depends on its stiffness, given by the spring constant *k*.

EXAMPLE

Given a spring constant k = 3 N/m, how much work is done to stretch the spring from 4 m to 6 *m*?

HOW TO: Find Work Done on a Spring

1) Plug k into F(x) = kxIf not given, find:

$$k = \frac{F}{x} = \frac{force\ applied}{distance}$$

2) Determine bounds [a, b]

a is _____ dist. from equilibrium b is _____ dist. from equilibrium

3) Find $W = \int_a^b F(x) dx$

-		$^{\prime\prime}$	CI	'IC	
24	134			ш	ы

A spring requires $12\,J$ of work to stretch the spring from $1.1\,m$ to $1.4\,m$ past its equilibrium. What is the spring constant?

PRACTICE

A spring requires a force of 8 N to stretch the spring to 5 cm past its equilibrium point. How much work would it take to stretch the spring from 2 cm to 9 cm past equilibrium?

PRACTICE

Suppose a force of $10\ N$ is required to stretch a spring $0.5\ m$ from its equilibrium position. How much work is required to compress the spring $0.2\ m$ from its equilibrium position?

EXAMPLE	A spring has a natural length of $8\ in$. It takes $24\ lb$ to stretch the spring $12\ in$.			
(A) Find the spring constant k .				
(B) How much work would it take to stretch the spring from 12 in to 16 in?				

Lifting Problems

• Recall: Work done by a force acting on an object from x = a to x = b is $W = \int_{-\infty}^{\infty} F(x) dx$

Recall
$$W = \int_{a}^{b} F(x) \ dx$$

► To find work needed to lift an object, the force is equivalent to its ______

EXAMPLE

A firefighter holds a 20 m rope with density of 3 kg/m from the top of a 20 m building. Find work required to lift the rope h = 10 m at a constant speed.

HOW TO: Solve Lifting Problems

- 1) Sketch picture of lifting problem
- 2) Find weight per length of rope if in lb/ft, plug in directly if in kg/m, multiply by _____ first
- 4) Determine bounds:
 lower = ____
 upper = height rope is lifted (h)
- 5) Integrate w.r.t. y

EXAMPLE

If there is an 8 kg bucket attached at the end of the rope above, what is the total work required to lift the rope and bucket h = 10 m?

Work to lift rope 10 *m*:

Work to lift bucket 10 *m*:

Total work:

	AOT	IOE
EK	ΔU . I	ICF.

A $120\ m$ chain hangs freely from the side of a building. The chain weighs $15\ kg/m$. How much work is done to pull $80\ m$ of the chain to the top of the building?

PRACTICE

Find the work done by fully winding up a cable of length 30 ft and weight-density 2 lb/ft.

PRACTICE

A 40~m rope hangs freely over a ledge. The density of the rope is 12~kg/m. If a 5~kg bucket is attached the end of the rope, how much work is done to pull the rope and the bucket to the ledge?

PRACTICE

A 60 ft cable is attached to a cylinder that is attached to a winch. If the cable weighs 300 lbs, how much work is needed to wind 20 ft of the cable onto the cylinder using the winch? Hint: Divide cable weight by cable length to get density.

Pumping Liquids

◆ Recall: Work done by lifting an object relies on its weight and the distance it is lifted.

Recall
$$W = \int_{a}^{b} F(x) \ dx$$

EXAMPLE

A cylindrical tank of radius 2 ft and a height of 12 ft is 8 ft full of oil that weighs $57 lb/ft^3$. Set up the integral to find the work required to pump the oil to the top of the tank.

HOW TO: Solve Pumping Problems

- 1) Sketch picture of tank/liquid
- 2) Find density of the liquid: if in lb/ft^3 , plug in directly if in kg/m^3 , multiply by _____ first
- 3) Find area of cross-section (fcn w.r.t. y)
- **4)** Find **distance** fcn: _____ *y*
- 5) Determine bounds:
 lower = bottom of tank (usually _____)
 upper = top layer of liquid
- **6)** Integrate w.r.t. *y*

◆ The cross-sectional area function will change depending on the shape of the tank.

EXAMPLE

A tank is in the shape of an inverted cone and is 10 m tall and has a radius of 4 m. If the tank is full of gasoline, how much work is required to empty the tank? (Gasoline has a weight-density of $6,670 N/m^3$).

Recall
$$W = \int_{a}^{b} (density * area * distance) dy$$

HOW TO: Solve Pumping Problems

- 1) Sketch picture of tank/liquid
- **2)** Find **density** of the liquid: if in lb/ft^3 , plug in directly if in kg/m^3 , multiply by 9.8 first
- 3) Find area of cross-section (fcn w.r.t. y)
- **4)** Find **distance** fcn: L y
- 5) Determine bounds:lower = bottom of tank (usually 0)upper = top layer of liquid
- 6) Integrate w.r.t. y

EXAMPLE

A spherical tank with an inner radius of 9 ft is two-thirds full of oil that weighs $50 lb/ft^3$. Find the work required to pump oil out through a hole in the top of the tank.

Recall
$$W = \int_{a}^{b} (density * area * distance) dy$$

HOW TO: Solve Pumping Problems

- 1) Sketch picture of tank/liquid
- **2)** Find **density** of the liquid: if in lb/ft^3 , plug in directly if in kg/m^3 , multiply by 9.8 first
- 3) Find area of cross-section (fcn w.r.t. y)
- **4)** Find **distance** fcn: L y
- **5)** Determine bounds:
 lower = bottom of *tank* (usually 0)
 upper = top layer of *liquid*
- 6) Integrate w.r.t. y

PRACTICE

A water trough for horses has a triangular cross section with a height of 3 m and horizontal side lengths of 2 m. The length of the trough is 12 m. How much work is required to pump the water to the top of the trough when it is half full?

PRACTICE

A swimming pool has the shape of a rectangular prism with a base that measures 30 ft by 20 ft and is 5 ft deep. The top of the pool is 1 ft above the surface of the water. How much work is required to pump all the water out? Assume the density of water is $62.4 lb/ft^3$.

EXAMPLE

A cylindrical tank of length 12 ft and a radius of 3 ft lay on its side and is full of molasses (100 lb/ft^3). Set up the integral to find work required to empty the tank through a pipe at the top of the tank.