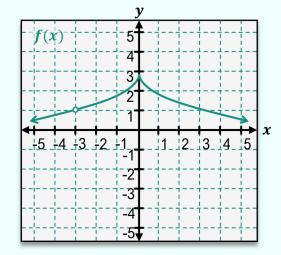

Determine Differentiability Graphically

- ullet Recall: f(x) is continuous where you can draw "without picking up your pencil" (no holes, jumps, asymptotes).
 - ▶ A function is **differentiable** (i.e. *derivative exists*) wherever it's continuous AND _____ (no *sharp corners*).

EXAMPLE

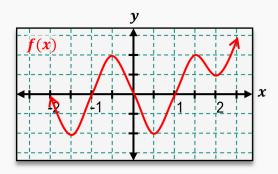
Determine if f(x) is (A) continuous at x = 2 and (B) differentiable at x = 2.

EXAMPLE

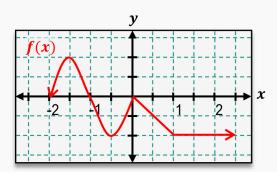

For each interval or x-val, determine if f(x) is continuous and/or differentiable.

- $(A) \quad x = -3$
- Continuous?

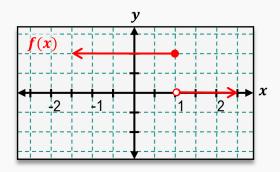
Differentiable?


- (\mathbf{B}) x=0
- Continuous?
- Differentiable?

- (\mathbf{C}) $(0,\infty)$
- Continuous?
- Differentiable?


PRACTICE

Determine if the graph of the function f(x) is continuous and/or differentiable at x = 2.


PRACTICE

Determine if the graph of the function f(x) is continuous and/or differentiable at x = 1.

PRACTICE

Determine if the graph of the function f(x) is continuous and/or differentiable at x=1.

Determine Differentiability Without a Graph

- Recall: A fcn is differentiable (i.e. derivative exists) wherever it's continuous & smooth (no sharp corners).
 - ▶ Polynomials are always differentiable. For piecewise fcns, check f(x) & f'(x) at _____(s) between the pieces.

Recall $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

EXAMPLE

Determine if the piecewise function below is (A) continuous and/or (B) differentiable.

$$f(x) = \begin{cases} x & \text{for } x < 2\\ x^2 - 2 & \text{for } x \ge 2 \end{cases}$$

Continuous: $f(a)_{left} = f(a)_{right}$

Differentiable: $f'(a)_{left} = f'(a)_{right}$

PRACTICE

Determine if the function f(x) is continuous and/or differentiable at x = 3.

$$f(x) = \begin{cases} x^2 & \text{for } x < 3\\ 2x + 3 & \text{for } x \ge 3 \end{cases}$$

PRACTICE

Determine if the function f(x) is continuous and/or differentiable at x=2.

$$f(x) = \begin{cases} x^3 & \text{for } x < 2\\ (x - 2)^2 & \text{for } x \ge 2 \end{cases}$$

PRACTICE

Determine where the function f(x) is not differentiable.

$$f(x) = \frac{3}{x+2}$$

PRACTICE

Determine if the function f(x) is continuous and/or differentiable at x = 3.

$$f(x) \begin{cases} x^2 & \text{for } x < 3 \\ \frac{27}{x} & \text{for } x \ge 3 \end{cases}$$