MASTER TABLE: RULES OF DIFFERENTIATION

NOTE: This table spans multiple videos.

RULES OF DIFFERENTIATION				
Name	Rule	Example		
Constant	$\frac{d}{dx}c = \underline{\hspace{1cm}}$	$\frac{d}{dx}7 =$		
Sum & Difference	$\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}f(x) - \frac{d}{dx}g(x)$	$\frac{d}{dx}(x+7) =$		
Constant Multiple	$\frac{d}{dx}[\mathbf{c}\cdot\mathbf{f}(\mathbf{x})] = \underline{\qquad} \cdot \frac{d}{dx}\mathbf{f}(\mathbf{x})$	$\frac{d}{dx}(8x) =$		
Power	$\frac{d}{dx}x^{n} = \underline{\qquad} \cdot x^{n} \underline{\qquad}$	$\frac{d}{dx}x^6 =$		
Product	$\frac{d}{dx}[f(x)\cdot g(x)] = \underline{\qquad} \cdot \underline{\qquad} + \underline{\qquad} \cdot \underline{\qquad}$	h(x) = (x - 5)(2x + 9) $h'(x) = () \cdot + () \cdot$		
Quotient	$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = -$	$h(x) = \frac{x}{3x - 4}$ $h'(x) = \frac{x}{3x - 4}$		
Chain	$\frac{d}{dx}[f(g(x))] = \underline{\qquad} (\underline{\qquad}) \cdot \underline{\qquad}$	$\frac{d}{dx}(4x+5)^3 = \underline{\qquad}$		

Derivatives of Linear Functions

◆ Instead of using limits, use these rules to quickly find derivatives.

EXAMPLE

Find the derivative of g(x) = 7 and f(x) = x.

Recall Derivatives Using Limits	New Derivatives Using Basic Rules
$g'(x) = \frac{d}{dx}7 = \lim_{h \to 0} \frac{7 - 7}{h}$ $= \lim_{h \to 0} 0 = 0$	$\frac{d}{dx}c = \underline{\qquad} \qquad g'(x) = \frac{d}{dx}7 = \underline{\qquad}$
$f'(x) = \frac{d}{dx}x = \lim_{h \to 0} \frac{x + h - x}{h}$ $= \lim_{h \to 0} \frac{h}{h}$ $= \lim_{h \to 0} 1 = 1$	$\frac{d}{dx}x = \underline{\qquad} \qquad f'(x) = \frac{d}{dx}x = \underline{\qquad}$

RULES OF DIFFERENTIATION				
Name	Rule	Example		
Sum & Difference	$\frac{d}{dx}[f(x) \pm g(x)] = \frac{d}{dx}f(x) \qquad \frac{d}{dx}g(x)$	$\frac{d}{dx}(x+7) =$		
Constant Multiple	$\frac{d}{dx}[\mathbf{c}\cdot\mathbf{f}(\mathbf{x})] = \underline{\qquad} \cdot \frac{d}{dx}\mathbf{f}(\mathbf{x})$	$\frac{d}{dx}(8x) =$		

◆ Use *multiple* rules together to find derivatives of more complicated functions.

PRACTICE

Find the indicated derivative.

$$f(x) = 3x - 4$$

f'(x) =

$$\frac{d}{dt}(-5t)$$

 $(c) \frac{d}{dt}(-5x)$

$$(D)$$
 $\frac{d}{dx}\pi$

The Power Rule

♦ To find the derivative of ANY power fcn $f(x) = x^n$, multiply by original exponent, then decrease exponent by ____.

RULES OF DIFFERENTIATION				
Name	Rule	Example		
Power	$\frac{d}{dx}x^n = \underline{\qquad} \cdot x^n \underline{\qquad}$	$\frac{d}{dx}x^6 =$		

EXAMPLE

Find the derivative of each function.

$$f(x) = x^4 + x^3$$

$$g(x) = 3x^2$$

The Power Rule: Negative & Rational Exponents

- ◆ Recall: The power rule works for *ANY* power function, including those with **negative** or **rational** exponents.
 - ► Hint: You may need to _____ a fcn as a power fcn *before* taking the derivative.

Recall $\frac{d}{dx}x^n = n \cdot x^{n-1}$

EXAMPLE

Find the derivative of each function using the power rule.

$$f(x) = x^{-3}$$

(B)

$$f(x) = x^{3/2}$$

(C)

$$f(x) = \frac{1}{x}$$

(D)

$$f(x) = \sqrt[3]{x}$$

EXAMPLE

Find the derivative of the given function.

$$y = 2x^3 - x^2 + 4x + 7$$

PRACTICE

Find the indicated derivative.

$$f(x) = 6x^4 - 4^3$$

$$f'(x) =$$

$$\frac{d}{dt}(5-7t^{-3})$$

(C)
$$y = \frac{5}{2}x^5 + 2x^3 + 6x - \frac{\sqrt{3}}{4}$$

$$v' =$$

(**D**)
$$h(t) = \frac{1}{2}t^3 + \frac{4}{t^2} + 3\sqrt{t}$$

$$h'(t) =$$

EXAMPLE

Answer the questions below given the function $f(x) = 2x^3 - 3x + 5$.

- (A) Find f'(x).
- (**B**) Find the equation of the tangent line at x = 1.
- (C) Find the values of x for which the tangent line is horizontal.

EXAMPLE

The number of cells in a cell culture is given by the function P(t), where P is the number of cells and t is measured in hours. Find P(24) and P'(24). What does this tell you about the cell culture?

$$P(t) = 1500 + 2t^2$$