Slopes of Tangent Lines

- ◆ Recall: Secant lines intersect the curve at [1 | 2] point(s). Slope = [AVERAGE | INSTANTANEOUS] rate of change.
 - ► Tangent lines _____ the curve at [1 | 2] point(s). Slope = [AVERAGE | INSTANTANEOUS] rate of change.
 - The slope of a tangent line is also called the **derivative**.

EXAMPLE

Given $f(x) = x^2$, find the slope of the tangent line at x = 1.

PRACTICE

Given the function $f(x) = 4x^2 - 1$, calculate the slope of the tangent line at x = -3.

PRACTICE

Given the function $f(x) = x^2 - 10x + 2$, calculate the slope of the tangent line at x = 2.

PRACTICE

Given the function $f(x) = x^2 + 100$, calculate the slope of the tangent line at x = 0.

Equations of Tangent Lines

◆ Recall: Tangent lines just touch the curve at 1 point.

▶ To find eq'n of a tan line, find _____ then plug into point-slope form.

Recall
$$m_{\tan} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

EXAMPLE

Find the eq'n of the line tangent to $f(x) = 3x^2 - 4$ at x = -2.

$$x$$
-val $(c) = ___ y$ -val $(f(c)) = ___$

 $m_{\tan} = \lim_{x \to \infty}$

$$=\lim_{x\to}$$

$$=\lim_{x\to}$$

$$=\lim_{x\to}$$

$$=\lim_{x\to}$$

$$=\lim_{x\to}$$

HOW TO: Find the Tangent Line to a Curve at a Point

- 1) Plug x-val (_) into f(x) to get y-val (f(c)) (if needed)
- 2) Plug given f(x), c, and f(c) into

$$m_{\text{tan}} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

- 3) Evaluate limit (might have to _____ & cancel)
- **4)** Plug $m_{\rm tan}$ & point into

$$(y - y$$
-val $) = m_{tan} (x - x$ -val $)$

5) Solve equation for y

PRACTICE

Given the function $f(x) = 3(x^2 - 1)$, find the equation of the tangent line at x = 1.

EXAMPLE

Find the equation of the line tangent to $f(x) = -4x^2$ at x = -2.

 $m_{\tan} = \lim_{x \to \infty}$

 $=\lim_{x\to}$

 $=\lim_{x\to}$

 $=\lim_{x\to}$

 $=\lim_{x\to}$

 $=\lim_{x\to}$

 $=\lim_{x\to}$