Derivatives of Sine & Cosine

◆ Instead of using limits, use these rules to quickly find derivatives of functions with sin & cos.

EXAMPLE

Find the derivative.

$$f(x) = 3x + \cos x$$

$$(B) f(x) = x^2 \sin x$$

PRACTICE

Find the derivative of the function.

$$(A) h(t) = \sin t \cos t$$

$$f(x) = \frac{5\cos x}{2x^3}$$

$$(C) y = \frac{\sin \theta}{2 + \cos \theta}$$

Higher Order Derivatives of Sine & Cosine

◆ To find $\frac{d^n}{dx^n} \sin x$ or $\frac{d^n}{dx^n} \cos x$, divide n by ______, then take derivatives based on _____

EXAMPLE

Find the indicated derivative.

(A)

$$\frac{d^{37}}{dx^{37}}\sin x$$

$$\frac{d}{dx} \dots =$$

$$\frac{d^2}{dx^2}... =$$

$$\frac{d^3}{dx^3}... =$$

$$\frac{d^4}{dx^4} \dots =$$

(B)

$$\frac{d^{58}}{dx^{58}}\cos x$$

$$\frac{d}{dx}\sin x = \cos x$$

$$\frac{d}{dx}\cos x = -\sin x$$

$$\frac{d}{dx}\cos x = -\sin x$$

PRACTICE

Find the indicated derivative.

(A)
$$f^{(19)}(x) \text{ of } f(x) = \cos x$$

$$\frac{d^{1002}}{dx^{1002}}(\sin x)$$

$$\frac{d^{52}y}{dx^{52}} \text{ of } y = \cos x$$

Derivatives of Other Trig Functions

◆ Derivatives of other trig functions can be found by rewriting in terms of sin & cos, then using the quotient rule.

EXAMPLE

Find the derivative.

$$f(x) = 3x^2 + \cot x$$

Recall
$$\frac{d}{dx}\sin x = \cos x \qquad \frac{d}{dx}\cos x = -\sin x$$
New
$$\frac{d}{dx}\tan x = \sec^2 x \qquad \frac{d}{dx}\cot x = -\csc^2 x$$

$$\frac{d}{dx}\sec x = \tan x \sec x \qquad \frac{d}{dx}\csc x = -\cot x \csc x$$

$$(B) f(x) = 4x \sec x$$

PRACTICE

Find the derivative of the function.

(A)
$$r = \csc x - 3\sin x + \tan x$$

$$(B) f(x) = 4x^2 \sec x - \sqrt{x}$$

$$(C) y = \frac{\cot \theta}{3 + \sec \theta}$$

EXAMPLE

Find the slope of the tangent line of f(x) at $x = \frac{\pi}{4}$.

$$f(x) = \sec x$$