Sigma Notation

◆ We can write a sum involving many terms in a more _____ way using **sigma notation**.

- ullet To evaluate a sum, plug in integer values, from the start index to the end index, into a_k , adding all terms together.
 - ▶ The index of summation (k) can be represented by any letter and can start at any integer.

EXAMPLE

Evaluate the following finite sums.

(A)

$$\sum_{k=1}^{3} k^2$$

(B)

$$\sum_{i=0}^{4} i + 3$$

PRACTICE

Evaluate the following summation:

(A)

$$\sum_{i=1}^{4} i^2 - 3i + 8$$

(B)

$$\sum_{k=1}^{4} \left(\frac{k}{2}\right)^2$$

$$(C) \qquad \sum_{i=0}^{2} \frac{2i}{3}$$

PRACTICE

Evaluate the following summation (make sure your calculator is in radian mode):

$$\sum_{i=1}^{4} \sin\left(\frac{\pi i}{8}\right)$$

EXAMPLE

Write the following expanded sums in sigma notation:

(A)
$$3 \cdot 1^2 + 3 \cdot 2^2 + 3 \cdot 3^2 + 3 \cdot 4^2 + 3 \cdot 5^2$$

$$(\mathbf{B}) \quad \frac{3}{4} + \frac{3}{2} + \frac{9}{4} + 3$$

Algebra Rules for Finite Sums

◆ Just like for derivatives and indefinite integrals, there are sum/difference and constant rules for sums.

RULES FOR FINITE SUMS		
Name	Rule	Example
Sum & Difference	$\sum_{k=1}^{n} (\boldsymbol{a}_{k} \pm \boldsymbol{b}_{k}) = \sum_{k=1}^{n} \boldsymbol{a}_{k} \qquad \sum_{k=1}^{n} \boldsymbol{b}_{k}$	$\sum_{k=1}^{3} (k^2 - k) = \sum_{k=1}^{3} - \sum_{k$
Constant Multiple	$\sum_{k=1}^{n} \mathbf{c} \cdot \mathbf{a}_{k} = \underline{\qquad} \cdot \sum_{k=1}^{n} \mathbf{a}_{k}$	$\sum_{k=1}^{3} 2k^2 = \underline{\qquad} \cdot \sum_{k=1}^{3} \underline{\qquad} =$
Constant Value	$\sum_{k=1}^{n} c = c \cdot \underline{\hspace{1cm}}$	$\sum_{k=1}^{18} 3 = \underline{\qquad} \cdot \underline{\qquad} = \underline{\qquad}$

◆ Use *multiple* rules together to find summations of more complicated functions.

EXAMPLE

Evaluate the given sum.

$$\sum_{k=1}^{3} (6k^2 - 9)$$

PRACTICE

Evaluate the following summations:

$$\sum_{t=2}^{6} 5t + \frac{4}{t}$$

$$\sum_{i=0}^{4} 2i + 1$$

$$\sum_{i=1}^{2} 4i^3 - 3i^2 + 2i - 1$$

PRACTICE

Evaluate the following summation (make sure your solution is in radians):

$$\sum_{k=0}^{5} 2 \tan \left(\frac{\pi k}{3} \right) - \pi k$$

Introduction to Riemann Sums

- ♦ Recall: We can estimate the area under the curve by breaking it into n rectangles (subintervals) of width $\Delta x = \frac{b-a}{n}$.
 - ► We can use _____ notation to represent the estimated area as a **Riemann sum**.

EXAMPLE

Estimate the area under the curve using a left endpoint Riemann sum with 4 subintervals.

PRACTICE

For the following graph, write a Riemann sum using left endpoints to approximate the area under the curve over [0,5] with 5 subintervals.

PRACTICE

For the following graph, write a Riemann sum using left endpoints to approximate the area under the curve over [0,6] with 6 subintervals.

PRACTICE

Write the Riemann sum that would approximate the area of the following graph over the interval [0,3] using 3 subintervals.

Left, Right, & Midpoint Riemann Sums

- ◆ Recall: When esimating area under a curve, we can use fcn values at the left endpoint, right endpoint, or midpoint.
 - ► For Riemann sums, we can do the same thing.

EXAMPLE

Set up the left, right, and midpoint Riemann sums for $f(x) = 4 - x^2$ on [0,2].

PRACTICE

Approximate the area under the curve $f(x) = \sqrt{x+3}$ over the interval [1,5] using the Right Riemann sum with 8 subintervals.

PRACTICE

Approximate the area under the curve $f(x) = \frac{2}{3x+5}$ over the interval [4,10] using the Midpoint Riemann sum with n=3 subintervals.

EXAMPLE

Set up and solve the left, right, and midpoint Riemann sums for $f(x) = x^3$ on the interval [0,4]. Use 4 subintervals. Tell which is an overestimate, and which is an underestimate.