Critical Points

- ◆ Graphically, all local (relative) extrema either have a _____ tangent OR _____ tangent.
 - ► This means local extrema occur at **critical points**: where f'(x) =_____ OR f'(x) =____.

EXAMPLE

Find all the critical points of g(x) & f(x).

◆ Critical points will be used to find many different characteristics of a function, including local & global extrema.

EXAMPLE

Find the critical points of the given function f(x).

$$f(x) = \frac{x^2}{x - 4}$$

PRACTICE

Find the critical points of the given function.

(A)
$$g(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 12x$$

$$(B) f(t) = \frac{6t}{t^2 + 1}$$

$$f(x) = \sqrt{2 - x^2}$$

EXAMPLE

Find the critical points of the given function..

$$f(\theta) = 2\sin\theta + \cos^2\theta$$

Finding Global Extrema (Extreme Value Theorem)

- ◆ The Extreme Value Theorem tells us how to determine if a function has a global maximum and minimum.
 - ► If a function does have global extrema, find those values by testing the _____ & ____

Extreme Value Theorem

If f is _____ on a ____ interval [a, b], then f has a

_____ maximum & minimum value within that interval.

EXAMPLE

Given the function $f(x) = 3x^2 + 1$ answer the following.

- (A) Does f(x) have a global max & min within the interval [-2, 4]?
- (**B**) If yes, find the global extrema of f(x) on the interval [-2, 4].

HOW TO: Find Global Extrema on a Closed Interval

1) Find critical points:

$$f'(x) = 0$$
 or $f'(x)$ DNE

- 2) Plug critical pts (if in _____) & endpts into _____
- 3) Of values found in (2):

Largest = global ____ Smallest = global ____

EXAMPLE

Find the absolute maximum and minimum values of the function on the given interval.

$$f(x) = 2x^4 - 8x^3 - 16x^2 + 3; [-2, 5]$$

HOW TO: Find Global Extrema on a Closed Interval

1) Find critical points:

$$f'(x) = 0$$
 or $f'(x)$ DNE

- 2) Plug critical pts (if in interval) & endpts into f(x)
- 3) Of values found in (2):

Largest = global MAX

Smallest = global MIN

PRACTICE

Find the global maximum and minimum values of the function on the given interval. State as ordered pairs.

(A)
$$y = x + \frac{2}{x}$$
; [0.25, 3]

(B)
$$y = 8 + 27x - x^3; [0, 4]$$

EXAMPLE

Find the global maximum and minimum value(s) of the function over $(-\infty, \infty)$ or state that there isn't one.

$$y = x^2 + 6x - 3$$

HOW TO: Find Global Extrema on a Closed Interval

1) Find critical points:

$$f'(x) = 0$$
 or $f'(x)$ DNE

- **2)** Plug critical pts (if in **interval**) & endpts into f(x)
- 3) Of values found in (2):

Largest = global MAX

Smallest = global MIN

EXAMPLE

Find the absolute maximum and minimum values of the function on the given interval.

$$f(x) = x + \cos x; [0, 2\pi]$$