Finding Area Between Curves on a Given Interval

- ◆ To find the area **between** two curves, *ALWAYS* graph the functions & shade the area between them *first*.
 - ► Then, integrate the _____ function **minus** the _____ function.

EXAMPLE

Find the area of the region between f(x) & g(x) from x = 0 to x = 1.

lacktriangle Note: This method works even when function(s) are below the x-axis.

PRACTICE

Calculate the area of the shaded region between the 2 functions from x = 0 to x = 9.

PRACTICE

Calculate the area of the shaded region between f(x) & g(x) contained between x = -4 & x = -2.

Recall
$$A = \int_{a}^{b} [f(x) - g(x)]dx$$

PRACTICE

Sketch the region bounded by $f(x) = -(x-2)^2 + 5$ & g(x) = 4x on the interval [0,1]. Then set up an integral to represent the region's area and evaluate.

PRACTICE

Shade the region bounded by $f(x) = \sin x \& g(x) = \cos 2x$ on the interval $\left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$. Then set up an integral to represent the region's area.

Recall
$$A = \int_{a}^{b} [f(x) - g(x)] dx$$

EXAMPLE

Find the area between $f(x) = |x| + 2 \& g(x) = x^2$ from x = 0 to x = 2.

Finding Area When Bounds Are Not Given

lacktriangled If bounds are *not* given, use the ______ points. To find them, set the functions equal & solve for x.

EXAMPLE

Find the area between $y = 4 - x^2 \& y = 2x + 1$.

PRACTICE

Find the area between $f(x) = x^2 - 4 \& g(x) = -x^2 + 4$.

PRACTICE

Find the area of the shaded region between $f(x) = x^4 - x^2 \& g(x) = 3x^2$.

PRACTICE

Find the area of the shaded region *ONLY* that lies between the line $y = 1 \& f(x) = \sin 2x$.

Finding Area Between Curves That Cross on the Interval

- ◆ To find the area between curves that **intersect** within the given interval, set up ____ integrals & _____ them.
 - ▶ Both integrals will still be TOP BOTTOM, but the top & bottom functions _____ after the intersection.

EXAMPLE

Set up an integral to represent the area between $f(x) = 4 - x^2 \& g(x) = 2x + 1$ on [0,2].

EXAMPLE

Calculate the area between $f(x) = 4 - x^2 \& g(x) = 2x + 1$ on [0,2].

Recall
$$A = \int_{a}^{b} [f(x) - g(x)]dx + \int_{b}^{c} [g(x) - f(x)]dx$$
(Area Between Curves w/ Intersection)

(Area Between Curves w/ Intersection)

$$A = \int_0^1 [(4 - x^2) - (2x + 1)] dx + \int_1^2 [(2x + 1) - (4 - x^2)] dx$$

PRACTICE

Find the shaded area between $f(x) = x^3 + 2x^2 \& g(x) = x + 2$.

PRACTICE

Find the area of the shaded region between $f(x) = \sin 2x \& g(x) = 2 \sin x$ from x = 0 to $x = 2\pi$.

Recall
$$A = \int_a^b [f(x) - g(x)]dx + \int_b^c [g(x) - f(x)]dx$$

EXAMPLE

Set up a definite integral to represent each of the 3 shaded areas.

(A)

(B)

(C)

