Antiderivatives

- ◆ We know how to find the *derivative* of a function; finding the **antiderivative** is just the _____ process.
 - ▶ If f(x) is the derivative of the function F(x), then we can say that F(x) is an _____derivative of f(x).

EXAMPLE

Find the antiderivative of the following functions.

$$f(x) = 3x^2$$

$$f(x) = 3$$

$$f(x) = 0$$

◆ When finding an *antiderivative*, check your answer by taking the *derivative* of it.

PRACTICE

Find the antiderivative of the following function.

$$f(x) = 200$$

PRACTICE

Find the antiderivative of the following function.

$$f(x) = 5x^4$$

PRACTICE

Find the antiderivative of the following function.

$$f(x) = 10x^9$$

Finding a Particular Antiderivative

- ♦ The antiderivative of f(x) is F(x) + C, which represents a _____ of antiderivatives.
 - ► Given a specific point on the antiderivative, we can solve for C, which gives us a _____ antiderivative.

EXAMPLE

Find the antiderivative of f(x) = 2x given F(2) = 3.

EXAMPLE

Find the antiderivative of $f(x) = 3x^2$ given F(1) = 5.

PRACTICE

For the following function f(x), find the antiderivative F(x) that satisfies the given condition.

$$f(x) = 5x^4; F(0) = 1$$

PRACTICE

For the following function f(x), find the antiderivative F(x) that satisfies the given condition.

$$f(x) = 100x^{99}; F(1) = 101$$