Motion Problems With Integrals: Velocity & Position

ullet Recall: Velocity is the derivative of position v(t)=ds/dt & displacement is change in position $\Delta s=sig(t_fig)-s(t_i)$.

EXAMPLE

Suppose that an object moves in a line such that its velocity is v(t) = 2t - 4.

Name	Formula	Example
Displacement (Δs) on an Interval $\left[t_i, t_f\right]$	$\Delta s = s(t_f) - s(t_i) = \int_{t_i}^{t_f} dt$	Find the displacement of the object on the interval $[0,5]$. $\Delta s = \int (\underline{}) dt$
Total Distance on an Interval $[t_i, t_f]$	$\int_{t_i}^{t_f} v(t) dt$	Find the total distance of the object on the interval $[0, 5]$. $Total \ Dist. = \int_{-\infty}^{\infty} \underline{} dt$
Position Function (s(t))	$s(t) = \underline{\qquad} + \int_{t_i}^{-} v(\underline{\qquad}) d\underline{\qquad}$	Find the position function given that $s(0) = 3$. $s(t) = \underline{\qquad} + \int_{\underline{\qquad}} \underline{\qquad}$

lacktriangle To find a future position, plug $t=t_f$ into position function s(t).

ы	-	Λ	2	Ŧ	C	Ξ
ы	14	Δ¥.	м		u	

The velocity (mi/hr) of a drone flying in the air is given by $v(t)=12+4t^2$ for $0 \le t \le 4$ hours. Let s(0)=0.

(A) Determine s(t) for $0 \le t \le 4$.

(B) How far does the drone travel during the first hour?

(\emph{C}) How far has the drone traveled by the time it has reached 48 mi/hr?

PRACTICE

Suppose that a particle travels along the *x*-axis and its velocity is given by $v(t) = 2\cos t$ for $0 \le t \le 2\pi$.

(A) Find the particle's displacement on $\left[0, \frac{5\pi}{4}\right]$.

(*B*) Find the total distance traveled by the particle on $\left[0, \frac{5\pi}{4}\right]$.

PRACTICE

A particle travels in a straight line and its velocity is given on the graph as v(t).

(A) Find displacement on [0, 5].

(B) Find total distance on [0, 5].

Motion Problems With Integrals: Acceleration

◆ Recall: Before, we integrated velocity to find position. Now, we can integrate acceleration to find velocity.

EXAMPLE

The acceleration of a particle moving along the *x*-axis is $a(t) = 6t - 12 \ m/s^2$.

(A) Find the velocity function, given that v(0) = -9 m/s.

New
$$v(t) = v(t_i) + \int_{t_i}^t a(x) dx$$

(**B**) Find the position function, given that s(0) = 1 m.

Recall
$$s(t) = s(t_i) + \int_{t_i}^{t} v(x) dx$$

(C) What is the position of the particle at time t = 8 s?

PRACTICE

At t=0, a car approaching a stop sign decelerates from a speed of $50 \ mi/hr$ according to the acceleration function a(t)=4t+3, where $t\geq 0$ and is measured in hours. How far does the car travel between t=0 and $t=0.1 \ hr$?

PRACTICE A particle moves along the *x*-axis and its acceleration is given by $a(t) = \cos \pi t$.

(*A*) Find v(t) if v(0) = 0.

(B) Find s(t) if s(0) = 1.

	- V	W	2	ना	6	-
P	NV.	I:	7	ш	U.	40

A rock is thrown from a height of 2 ft with an initial speed of 25 ft/s. Acceleration resulting from gravity is $-32 ft/s^2$.

(A) Find v(t).

 $(\mathbf{\textit{B}})$ Find s(t).

EXAMPLE	A particle moves so that its acceleration (m/s^2) is defined by $a(t) = 2t - 1$ where $t \ge 0$ seconds.			
(A) Find $v(t)$ if	v(0) = 6 m/s.			
(B) Find displacement of the particle during the first 5 seconds.				

 (\it{C}) Find total distance traveled by the particle during the first 5 seconds.