Converting between Degrees & Radians

◆ Radians: A different unit for measuring angles, based on a circle's circumference. Full circle = 360° = ____ radians

EXAMPLE Convert the angle from degrees to radians or from radians to degrees.

 $(A) (B) \frac{6\pi}{5}$

TOPIC: RADIANS

PRACTICE

Convert the angle 540° from degrees to radians.

 $heta_r = rac{\pi}{180^{\circ}} \cdot heta_d$ (degrees to radians)

 $\theta_d = \frac{180^{\circ}}{\pi} \cdot \theta_r$

(radians to degrees)

PRACTICE

Convert the angle $-\frac{5\pi}{6}$ from radians to degrees.

Recall $\theta_r = \frac{\pi}{180^{\circ}} \cdot \theta_d$

(degrees to radians)

 $heta_d = rac{180^\circ}{\pi} \cdot heta_r$ (radians to degrees)

TOPIC: RIGHT TRIANGLE TRIGONOMETRY

Introduction to Trigonometric Functions

- ◆ **Trig Functions** relate ______ to side lengths in right triangles.
 - ▶ The three main trig functions are Sine, Cosine, & Tangent which are _____.

SOH $\sin \theta = \frac{Opposite\ Side}{Hypotenuse}$ $\cos \theta = \frac{Adjacent\ Side}{Hypotenuse}$ $\tan \theta = \frac{Opposite\ Side}{Adjacent\ Side} = \frac{\sin \theta}{\cos \theta}$ $\sin \theta = - \tan \theta = --$

EXAMPLE

Find the value of the trig function indicated, given the triangle.

(A) $\sin x$

cos *y*

TOPIC: RIGHT TRIANGLE TRIGONOMETRY

PRACTICE

Given the right triangle below, evaluate $cos(\theta)$.

PRACTICE

Given the right triangle below, evaluate $tan(\theta)$.

TOPIC: REFERENCE ANGLES

Trig Values in Quadrants II, III, & IV

- ◆ The sin, cos, & tan of angles NOT in Q1 have the same value as the sin, cos, & tan of their reference angles.
 - ► HOWEVER, the _____ of the values will change based on their quadrant.

TOPIC: REFERENCE ANGLES

EXAMPLE

Use reference angles to complete the missing trig values in quadrants II, III, & IV of the unit circle.

PRACTICE

Identify what angle, θ , satisfies the following conditions.

$$\sin \theta = \frac{1}{2}; \tan \theta < 0$$

$$\theta = \underline{\hspace{1cm}}$$

$$\cos \theta = \frac{\sqrt{3}}{2}; \sin \theta < 0$$

$$\theta = \underline{\qquad}$$
(C)

$$\tan \theta = -1; \cos \theta > 0$$

$$\theta =$$

TOPIC: REFERENCE ANGLES

EXAMPLE

Fill in all missing information in the unit circle below.

