Initial Value Problems

- ◆ A differential equation is an equation involving an unknown function and its ______.
 - ► A differential eqn combined with an _____ condition $(y(x_0) = y_0)$ is called an **initial value problem** (IVP).

EXAMPLE

Solve the initial value problem given by $\frac{dy}{dx} = 3x^2 - 4$, y(1) = -1 by finding y(x).

New	Initial Value Problems
	$\frac{dy}{dx} = 3x^2 - 4$
	Find general solution
	Apply Initial Conditions
	Write particular solution

• To solve a differential equation with higher order derivative $\left(\frac{d^2y}{dx^2}, \frac{d^3y}{dx^3}, \dots\right)$, apply this same process *multiple* times.

PRACTICE

Solve the following IVP:

$$\frac{dy}{dx} = 2x - 5; y(0) = 4$$

PRACTICE

Using the acceleration function below, find the velocity function, if the velocity is v = 5 at time t = 2.

$$a(t) = -20$$

PRACTICE

Find the function f(x) that satisfies the following differential equation.

$$f''(x) = 3x^2; f'(0) = 1; f(1) = 3$$

EXAMPLE

Solve the initial value problem given by $\frac{d^2y}{dx^2} = 4x^3 - 10$, y'(1) = -2, y(0) = 3.

EXAMPLE

An object moving along a line is described by the acceleration function a(t). Find the position function s(t) given initial velocity: v(0) = 9 and initial position: s(0) = 0.

$$a(t) = -9.8$$