Classifying Differential Equations

lacktriangle A differential equation (DE) is an equation involving a function $y = f(x)$ and its			
► A	DE can be classified by its order (der	ivative) and whether it is linear or n	onlinear.
EXAMPLE Determine the order of the following differential equations and indicate if they are linear.			
(A)	$y^{\prime\prime} + 4y^{\prime} - 3y = \sin(e^x)$	Dependent var. (often y) & its derivatives are	
		Not multiplied by each other	
		Only raised to 1st power	
	Order:	Not the "inside" of a function	
	[LINEAR NONLINEAR]		
(B)	$ty'' - t^2y^{(4)} = e^y$	Dependent var. (often y) & its derivatives are	
		Not multiplied by each other	
		Only raised to 1st power	
	Order:	Not the "inside" of a function	
		[LINEAR NONLINEAR]	
(C)	$y \cdot \frac{dy}{dx} + 5\left(\frac{dy}{dx}\right)^3 - 4 = 2x$	Dependent var. (often y) & its derivatives are	
		Not multiplied by each other	
		Only raised to 1st power	
	Order:	Not the "inside" of a function	

[LINEAR | NONLINEAR]

PRACTICE

State the order of the differential equation and indicate if it is linear or nonlinear.

(A)
$$y''' + 3xy = 4\sqrt{x}$$

$$\begin{vmatrix} (B) \\ \frac{d^2y}{dx^2} - (\frac{dy}{dx})(1-x) = 2 \end{vmatrix}$$
 (C) $(y'')^2 + 6e^ty' = 4t$
$$\begin{vmatrix} (D) \\ y' \cdot y = 3e^t \end{vmatrix}$$

Verifying Solutions of Differential Equations

ullet The solution of a DE is any function y = f(x) that makes the equation true when y & its *derivatives* are plugged in.

EXAMPLE

Verify that the following functions are solutions to the given differential equations.

(A)
$$y = e^{2x}$$
; $3y' - 5y = e^{2x}$

(B)
$$y = 4 + \ln x$$
; $xy'' + y' = 0$

◆ DEs can also be in *implicit* form (*y* is not isolated) which requires *implicit differentiation* of the solution to verify.

EXAMPLE

Use implicit differentiation to show that the given solution satisfies the indicated differential equation.

Solution: $4x^2 = 2y^3 + 4y$; DE: $(3y^2 + 2)y' = 4x$

EXAMPLE

Verify that the given function $y(t) = -2\cos 2t$ is a solution of the initial value problem y'' + 4y = 0, y'(0) = 0.

EXAMPLE

Determine if $y = e^{4x}$ is a solution to the differential equation y'' - 4y' + 3y = 0.

EXAMPLE

Show that the given function is the general solution of the indicated differential equation. Assume that \mathcal{C} is an arbitrary constant.

Solution:
$$y = \frac{c}{x^2}$$

DE:
$$xy' = -2y$$

EXAMPLE

Verify that the given function is a solution of the differential equation that follows it. Assume *C* is an arbitrary constant.

$$y(t) = Ce^{-6t}; \ y'(t) + 6y(t) = 0$$

EXAMPLE

Use implicit differentiation to show that the given solution satisfies the indicated differential equation. Assume \mathcal{C} is an arbitrary constant.

Solution:
$$y + x^2y^2 - 3x = C$$

DE:
$$(1 + 2x^2y)y' = 3 - 2xy^2$$

Solutions to Basic Differential Equations

- ◆ The *general* solution of a basic DE is the antideriv. w/ integration constant C, which represents a ______ of fcns.
 - ► The *particular* solution of a DE is found by using an initial condition (a _____ on the function curve).

EXAMPLE

Find the particular solution to the differential equation $y' = 4x^3$ passing through the point (1,4).

EXAMPLE

Verify that $y = Ce^{x^2}$ is a solution to the differential equation y' = 2xy and find the particular solution that passes through the point (0,6).

PRACTICE

Find the particular solution to the differential equation $y' = 2e^t + 4t$ given the initial condition y(0) = 1.

PRACTICE

Find the general solution to the differential equation $\frac{dy}{dx} = -2x + 5x^2$.

PRACTICE

Find the particular solution to the differential equation $y' = 2 \sin x + 3 \cos x$ given the initial condition y(0) = 4.