Intro to the Chain Rule

ullet To differentiate a composite function f(g(x)), start from the **outside** and work your way **inside**.

RULES OF DIFFERENTIATION		
Name	Rule	Example
Chain	$\frac{d}{dx}[f(g(x))] = \underline{\qquad}$	$\frac{d}{dx}(4x+5)^3 = \underline{\qquad}$

► Alternate notation: If y = f(u) and u = g(x), $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$.

EXAMPLE

Find f'(x) using the chain rule.

$$f(x) = 2(3x^2 - x)^4$$

PRACTICE

Find the derivative of the function.

$$f(x) = \sqrt{5x^2 - 3x}$$

(B)
$$y = (8x^3 - 2x)^{3/2}$$

(C)
$$f(t) = (3t^2 + 7t - 2)^{10}$$

EXAMPLE

Find $\frac{dy}{dx}$ for the function.

(A)
$$y = (2x - 1)^4 \cdot (3 + x)^2$$

(B)
$$y = \frac{(2x-1)^4}{(3+x)^2}$$

EXAMPLE

Find the derivative of each function.

 $f(x) = \sin^5 x$

 $f(x) = \sin(x^5)$

PRACTICE

Find the derivative of the function.

 $f(x) = \sin(3x^2)$

 $y = 3\cos^4 \theta$

 $f(t) = \sec(4t + 5)$

The Chain Rule for 3+ Functions

- ◆ Recall: Use the chain rule from the **outside** to **inside**. You may need to use this rule *multiple* times.
 - ► When given trig functions with powers (e.g. $\sin^n x$), rewrite power on the _____: $(\sin x)$ —

EXAMPLE

Find f'(x) using the chain rule.

$$f(x) = \sin^4(3x^2)$$

Recall
$$\frac{d}{dx} [f(g(x))] = f'(g(x)) \cdot g'(x)$$

PRACTICE

Find the derivative of the function.

(A)
$$f(x) = \sin^5(2x^3 + 1)$$

$$(B) y = \cos^3(\sec\theta)$$

EXAMPLE

Find the derivative.

$$f(x) = \tan(3 - \sin 2x)$$