TOPIC: THE SECOND DERIVATIVE TEST

The Second Derivative Test: Finding Local Extrema

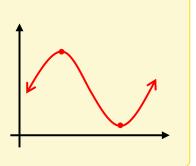
- ullet Recall: The sign of the second derivative f'' tells us whether a function is concave up (+) or down (-).
 - ► Determine whether a _____ point is a local max or min based on its **concavity** at that point.

Second Derivative Test

Suppose f'' is continuous on an open interval containing c.

If
$$f'(c) =$$
____ AND...

- f''(c) is ____, then f has a local [MIN | MAX] at c.
- f''(c) is ____, then f has a local [MIN | MAX] at c.
- f''(c) is ____, then ____, use _____ derivative test.



EXAMPLE

Locate the local extrema of f(x) using the second derivative test.

$$f(x) = x^3 - 3x^2 + 4$$

HOW TO: Find Local Extrema Using Second Derivative Test

- **1)** Find where $f'(x) = _{---}^*$
- **2)** Plug values from **(1)** into f''. If...

f'' is*: -, pt. is local **MAX** +, pt. is local **MIN**

3) If asked: Find **value** of max/min by plugging crit. pt. into _____

*If f'(x) DNE or f'' = 0, use 1st deriv. test

TOPIC: THE SECOND DERIVATIVE TEST

PRACTICE

Use the second derivative test to find the local extrema of the given function.

(A) $g(x) = x^3 - 6x^2 + 9x + 2$

HOW TO: Find Local Extrema Using Second Derivative Test

1) Find where $f'(x) = 0^*$

2) Plug values from **(1)** into f''. If...

$$f''$$
 is*: -, pt. is local **MAX** +, pt. is local **MIN**

3) If asked: Find value of max/min by plugging crit. pt. into f(x)

*If f'(x) DNE or f''=0, use 1st deriv. test

(B)
$$f(x) = \frac{x^2 - 4}{x^2 + 1}$$

(C)
$$f(x) = 4\sin x \cos x; 0 < x < \pi$$

TOPIC: THE SECOND DERIVATIVE TEST

EXAMPLE

Find the local extrema of $f(x) = x^4 - 4x^3 + 6x^2 - 4x + 1$.

HOW TO: Find Local Extrema Using Second Derivative Test

- **1)** Find where $f'(x) = 0^*$
- **2)** Plug values from **(1)** into f''. If...

$$f''$$
 is*: -, pt. is local **MAX** +, pt. is local **MIN**

3) If asked: Find value of max/min by plugging crit. pt. into f(x)

*If f'(x) DNE or f'' = 0, use 1st deriv. test