TOPIC: INTRODUCTION TO LOGARITHMS

Evaluate Logarithms

◆ You can evaluate many logarithms using properties that come from the log being the _____ of an exponential.

New	Properties of Logarithms					
Name	Example	Property	Description			
Inverse Property	$\log_2 2^3 = \underline{\qquad}$ $2^{\log_2 3} = \underline{\qquad}$	$\log_{\mathbf{b}} \mathbf{b}^{x} = x$ $\mathbf{b}^{\log_{\mathbf{b}} x} = x$	Logs & exponentials w/ the same base			
Log of the Base	log ₂ 2 =	$\log_b b = 1$	Log of its <i>base</i> equals			
Log of 1	log ₂ 1 = "2 to what power gives 1?"	$\log_b 1 = 0$	ANYlog of 1 equals			

EXAMPLE

Using known properties, evaluate the given logarithms.

 $\log_2 \sqrt[3]{2}$

(**B**) ln 1

(**C**) log 10

 $\log_5\frac{1}{5}$

TOPIC: INTRODUCTION TO LOGARITHMS

PRACTICE

Evaluate the given logarithm.

 (\boldsymbol{A})

 $\log_7 7^{0.3}$

(**B**)

 $\frac{3}{2}\log 1$

(**C**)

 $\log_9 \frac{1}{81}$

Product, Quotient, and Power Rules of Logs

◆ Properties of **exponents** correspond to properties of **logarithms** that we can use to **expand** log expressions.

New	Properties of Logarithms				
Name	Exponents	Property	Description		
Product Rule	$b^m \times b^n = b^{m+n}$	$\log_b(m \times n) = \log_b m \underline{\hspace{1cm}} \log_b n$	- Multiply terms in a log \rightarrow [ADD SUBTRACT] logs		
		EX. $\log_2 3x =$			
Quotient	$b^m \ _ \ \iota_m - n$	$\log_b\left(\frac{m}{n}\right) = \log_b m \underline{\hspace{1cm}} \log_b n$	Divide terms in a log → [ADD SUBTRACT] logs		
Rule	$\frac{b^m}{b^n} = b^{m-n}$	$\log_5 \frac{5}{y} =$	- Divide terms in a log → [ADD 30B1RAC1] logs		
Power	$(b^m)^n = b^{m \cdot n}$	$\log_b m^n = \underline{\hspace{1cm}} \log_b m$	Term to a <i>power</i> → log by power		
Rule	(0) -0	EX. $\ln 7^2 =$			

Expand & Condense Expressions Using Properties of Logs

- ◆ You may be given problems in which you are asked to either **expand** *OR* ______ logarithmic expressions.
 - ▶ Properties of logarithms can be applied in _____ directions depending on your goal.

Properties of Logarithms					
Name	Property				
Product Rule	$\log_b(m \times n) = \log_b m + \log_b n$				
Quotient Rule	$\log_b\left(\frac{m}{n}\right) = \log_b m - \log_b n$				
Power Rule	$\log_b m^n = n \log_b m$				
Expand /					

EXAMPLE

Expand the log expression as much as possible.

 $\log_2 3xy^2$

EXAMPLE

Condense

Condense the given expression into a single log.

 $2\ln x - \ln(x+2)$

◆ When condensing logs, remember the base must be the _____ & always apply the power rule _____.

PRACTICE

Write each logarithmic expression as a single log.

(A)

$$\log_2 \frac{1}{9x} + 2\log_2 3x$$

(**B**)

$$\ln\frac{3x}{y} + 2\ln 2y - \ln 4x$$

PRACTICE

Write each single logarithm as a sum or difference of logs.

(A)

$$\log_3\left(\frac{\sqrt{x}}{9y^2}\right)$$

(**B**)

$$\log_5\left(\frac{5(2x+3)^2}{x^3}\right)$$

Evaluating Logarithms Using the Change of Base Property

- ◆ If a logarithm doesn't have a base that is easy to evaluate, you can simply _____ the base.
 - ▶ You'll most often want to change the base to be either ____ or ____, to easily evaluate with any calculator.

EXAMPLE

Evaluate the given logarithms using the change of base property and a calculator. Use common logs for (\mathbf{A}) , (\mathbf{B}) and natural logs for (\mathbf{C}) , (\mathbf{D}) .

$$\log_7 31 =$$

$$\log_{\pi} 9 =$$

$$\log_{\pi} 9 =$$

$$\log_{\sqrt{3}} e =$$

PRACTICE	Evaluate the given logarithms using the change of base formula and a calculator. Use common logs.					
(A)	$\log_3 17$	(<i>B</i>)	$\log_9 67$			
PRACTICE	Evaluate the given logarithms using the change of base formula and a calculator. Use natural logs.					
(A)	$\log_8 41$	(<i>B</i>)	$\log_2 3789$			