TOPIC: INTRODUCTION TO LOGARITHMS ## **Logarithms Introduction** - ◆ The _____ (inverse) operation of an exponential is taking the *logarithm* (log). - ▶ Logs and exponentials with the same **base** _____ each other. - A log gives us the power that some base must be raised to in order to equal a particular number. Solving Polynomials $x^{3} = 216$ $\sqrt[3]{x^{3}} = \sqrt[3]{216}$ $x = \sqrt[3]{216}$ x = 3 x = 3Solving Exponentials $2^{x} = 8$ $2^{x} = 216$ $2 \times 2 \times 2 = 8$ x = 3 $x = \log$ (Logarithmic Form) "log base 2 of 216" ◆ You will need to convert expressions between **exponential form** and **logarithmic form**. **EXAMPLE** Write each log in exponential form & each exponential in log form. (A) $$x = \log_5 800$$ $\log_2 16 = 4$ C ullet \log_{10} , known as the _____ log, can be written as just ____ and has its own calculator button: LOG ### **TOPIC: GRAPHING LOGARITHMIC FUNCTIONS** ## **Graphs of Logarithmic Functions** - ◆ We can graph a logarithmic function using the fact that it is the _____ of an exponential function. - $f(x) = \log_b x$ can be graphed by _____ the graph of its inverse function, $y = b^x$ over ____. ♦ Just like its inverse, the direction of the graph of $f(x) = \log_b x$ depends on ____. ◆ Graph [INCREASES | DECREASES] ◆ Graph [INCREASES | DECREASES] ## **TOPIC: GRAPHING LOGARITHMIC FUNCTIONS** EXAMPLE: Graph $f(x) = 3^x$ and $g(x) = \log_3 x$ on the graph below. Determine the domain and range of each. | <u>x</u> | $f(x)=3^x$ | |----------|------------| | -2 | | | -1 | | | 0 | | | 1 | | | 2 | | | x | $g(x) = \log_3 x$ | |---|-------------------| | | | | | | | | | | | | | | | | | | Domain: _____ Domain: _____ Range: _____ Range: _____ ### **TOPIC: INTRODUCTION TO LOGARITHMS** ## The Natural Log - ullet Besides the common log, (\log_{10}), another frequently occurring log is \log ___, called the _____ log. - ► The natural log is written as _____, and also has its own calculator button: LN **EXAMPLE** Write each log in exponential form & each exponential in log form. $$(A) x = \ln 17$$ $$(\mathbf{B}) \quad e^x = 4$$ # **TOPIC: INTRODUCTION TO LOGARITHMS** PRACTICE Convert the following logarithmic statement to its equivalent exponential form. (\mathbf{A}) $$\log_4 x = 5$$ (**B**) $$x = \log 9$$ PRACTICE Convert the following exponential statements to their equivalent logarithmic form. (\boldsymbol{A}) $$3^x = 7$$ (**B**) $$e^9 = x + 3$$