TOPIC: INTRODUCTION TO LOGARITHMS

Logarithms Introduction

- ◆ The _____ (inverse) operation of an exponential is taking the *logarithm* (log).
 - ▶ Logs and exponentials with the same **base** _____ each other.
 - A log gives us the power that some base must be raised to in order to equal a particular number.

Solving Polynomials $x^{3} = 216$ $\sqrt[3]{x^{3}} = \sqrt[3]{216}$ $x = \sqrt[3]{216}$ x = 3 x = 3Solving Exponentials $2^{x} = 8$ $2^{x} = 216$ $2 \times 2 \times 2 = 8$ x = 3 $x = \log$ (Logarithmic Form)
"log base 2 of 216"

◆ You will need to convert expressions between **exponential form** and **logarithmic form**.

EXAMPLE

Write each log in exponential form & each exponential in log form.

(A)
$$x = \log_5 800$$
 $\log_2 16 = 4$ C

ullet \log_{10} , known as the _____ log, can be written as just ____ and has its own calculator button: LOG

TOPIC: GRAPHING LOGARITHMIC FUNCTIONS

Graphs of Logarithmic Functions

- ◆ We can graph a logarithmic function using the fact that it is the _____ of an exponential function.
 - $f(x) = \log_b x$ can be graphed by _____ the graph of its inverse function, $y = b^x$ over ____.

♦ Just like its inverse, the direction of the graph of $f(x) = \log_b x$ depends on ____.

◆ Graph [INCREASES | DECREASES]

◆ Graph [INCREASES | DECREASES]

TOPIC: GRAPHING LOGARITHMIC FUNCTIONS

EXAMPLE: Graph $f(x) = 3^x$ and $g(x) = \log_3 x$ on the graph below. Determine the domain and range of each.

<u>x</u>	$f(x)=3^x$
-2	
-1	
0	
1	
2	

x	$g(x) = \log_3 x$

Domain: _____

Domain: _____

Range: _____

Range: _____

TOPIC: INTRODUCTION TO LOGARITHMS

The Natural Log

- ullet Besides the common log, (\log_{10}), another frequently occurring log is \log ___, called the _____ log.
 - ► The natural log is written as _____, and also has its own calculator button: LN

EXAMPLE

Write each log in exponential form & each exponential in log form.

$$(A) x = \ln 17$$

$$(\mathbf{B}) \quad e^x = 4$$

TOPIC: INTRODUCTION TO LOGARITHMS

PRACTICE

Convert the following logarithmic statement to its equivalent exponential form.

 (\mathbf{A})

$$\log_4 x = 5$$

(**B**)

$$x = \log 9$$

PRACTICE

Convert the following exponential statements to their equivalent logarithmic form.

 (\boldsymbol{A})

$$3^x = 7$$

(**B**)

$$e^9 = x + 3$$