The Product Rule

♦ The derivative of $f(x) \cdot g(x)$ is *NOT* equal to $f'(x) \cdot g'(x)$. Instead, use the product rule!

RULES OF DIFFERENTIATION			
Name	Rule	Example	
Product	$\frac{d}{dx}[f(x)\cdot g(x)] = \underline{\qquad} \cdot \underline{\qquad} + \underline{\qquad} \cdot \underline{\qquad}$	h(x) = (x - 5)(2x + 9) h'(x) = (
	d() + d()		

EXAMPLE

Find the derivative using the product rule.

$$y = (2x^2 - 1)(3 + x^3)$$

EXAMPLE

Find the derivative of y by (A) using the product rule and (B) multiplying out the expression & using the power rule.

$$y = 4x^2(8 - x^3)$$

PRACTICE

Find the derivative of each function.

$$(A) y = (3x+5)^2$$

(B)
$$f(t) = 2t(t^{-3} + t^{2/3})$$

EXAMPLE

Find the slope of the tangent line to the curve $y = (x^2 - 5)(6x + 1)$ at x = 2.

The Quotient Rule

♦ The derivative of $\frac{f(x)}{g(x)}$ is *NOT* equal to $\frac{f'(x)}{g'(x)}$. Instead, use the quotient rule!

RULES OF DIFFERENTIATION			
Name	Rule	Example	
Quotient	dx[g(x)]	$h(x) = \frac{x}{3x - 4}$ $h'(x) = \frac{x}{3x - 4}$	

EXAMPLE

Find the derivative using the quotient rule.

$$y = \frac{2x^2 - 1}{3 - x^3}$$

PRACTICE

Find the derivative of the function.

$$(A) y = \frac{2-3t}{4t^2+7}$$

$$f(x) = \frac{2x-1}{x^3+2}$$

(C)
$$g(y) = \frac{5y^2 + 2y - 1}{y^2 - 2}$$

EXAMPLE

Find the derivative.

$$y = \frac{(x+1)(x^2 - 3x)}{x^3}$$

EXAMPLE

Given that f(2) = 4, f'(2) = -1 and g(2) = 3, g'(2) = 0, find h'(2) if (A) h(x) = f(x)g(x) and (B) $h(x) = \frac{f(x)}{g(x)}$.

EXAMPLE

The population of a species of bird is given by the function $P(t) = \frac{6t+5}{0.3t^2+2}$, where t is the time in years. Find P'(t) and interpret its meaning.