CONCEPT: OVERVIEW OF CELL SURFACE RECEPTORS

- There are three types of cell surface ______
 - □ **Ion channel coupled receptors** produce and respond to different electrical gradients stemming from ions
 - Can also convert chemical signals into electrical signals (Ex: neuronal signaling)
 - □ **G-protein coupled receptors** activate G proteins in the cytosol
 - G proteins then act on enzymes or ion channels to cause signaling cascades
 - □ Enzyme coupled receptors (protein kinase receptors) act as enzymes, usually in a receptor complex
 - C-terminal domain contains enzymatic characteristics

EXAMPLE: Three types of cell surface receptors

- Commonalities exist between the three main receptors and their ______ pathways
 - □ Usually, these receptors are activated by binding to a ligand
 - If the ligand remains for long time periods the cell responds by down-regulating (removing) the receptor
 - □ Protein kinases (add phosphates) and phosphatases (remove phosphates) are involved downstream of activation
 - □ **Second messengers** are molecules that act to sign ______ of the receptor/ligand binding
 - Make up **signal transduction pathways** which is the collection of stepwise signaling events
 - The final step to a signal transduction pathway is usually activation or inhibition of a transcription factor

EXAMPLE: Example of a signal transduction pathway

PRACTICE:

- 1. Which of the following is not a type of cell surface receptors?
 - a. Ion Channel Receptors
 - b. G-Protein Coupled Receptors
 - c. Signal Coupled Receptors
 - d. Enzyme Coupled Receptors

- 2. Which of the following receptors responds to an electrical gradient across a membrane? a. Ion Channel Receptors

 - b. G-Protein Coupled Receptors
 - c. Signal Coupled Receptors
 - d. Enzyme Coupled Receptors