CONCEPT: MODEL ORGANISMS

Theory of model organisms

- Model organisms are organisms commonly used to ______ biology
 - ☐ They typically have certain features that make them exceptionally useful for study
 - Examples include: fast division, transparent bodies, easy to genetically manipulate
 - □ Every organism is descended from an ancestral cell
 - Pro: Genome comparisons reveal diverse sizes, but similar genes include conservation
 - Con: **Genetic redundancy** describes the presence of multiple gene versions within an organism
 - Complicates study because mutants may have no effect because of redundant proteins

EXAMPLE: Protein sequence conservation of Histone H1 protein

Histone H1 (residues 120-180)

HUMAN KKASKPKKAASKAPTKKPKATPVKKAKKKLAATPKKAKKPKTVKAKPVKASKPKKAKPVK MOUSE KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKAKKPKVVKVKVVKVKPVKASKPKKAKTVK RAT KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKAKKPKIVKVKPVKASKPKKAKPVK COW KKAAKPKKAASKAPSKKPKATPVKKAKKKPAATPKKTKKPKTVKAKPVKASKPKKTKPVK CHIMP KKASKPKKAASKAPTKKPKATPVKKAKKKLAATPKKAKKPKTVKAKPVKASKPKKAKPVK

Main Model Organisms List

	scherichia <i>coli</i> is used to study	biology
	echarichia call is lisaa ta stilav	niology
-	SCHEHCIHA COH IS USEU IO SIUUV	DIGIOUV

- ☐ Has same basic genetic mechanisms as all other organisms
- □ Rapidly divides every 20 minutes when grown in special broths
- □ Scientists can use *E.coli* to replicate DNA and grow proteins for experimental use

EXAMPLE: E. coli cells

Yeast, or Saccharomyces cerevisiae, is used to study basic	biology
□ Single Eukaryotic cells with a small genome that can be grown in a laboratory	
□ Yeast division occurs once every 2 hours	

□ **Genetic Screens** are performed by mutagenizing yeast cells to look for *phenotypes* (physical attributes)

- These are able to identify specific genes that cause certain phenotypes

EXAMPLE: Yeast cells

Drosophila melanogaster (fruit fly) has been used to study the mechanisms of		
	□ These includes: chromosomal biology, formation of multicellular structures, and body patterning	
	□ Has a 2 week reproductive cycle	
	□ Mainly used for gene identification and function	
• Caenorhabditis elegans has been used to study cell differentiation and		
	$\hfill\Box$ The entire sequence of events from the \emph{zygote} to the final 959 body cells is known	
	□ 70% of human genes have worm counterparts	
	□ Mainly used to study cell lineage and development through the creation of mutant worms	

EXAMPLE: Images of *Drosophila* and *C. elegans*

- Arabidopsis thaliana is used to study ______ genetics and development
 - □ A weed that can be grown indoors with large numbers of offspring (thousands in 8-10 weeks)
 - □ Contains 26,000 genes, which is about the same as humans (25,000 genes)

EXAMPLE: Arabidopsis weed

- Zebrafish and frogs are used to study ______ biology
 - □ **Zebrafish** (*Danio rerio*) are transparent for the first two weeks of development
 - Easy to inject genes into the embryo
 - Easy to maintain and reproduce rapidly
 - □ **Frogs** (*Xenopus laevis*) are used to study development because of their large eggs
 - Easy to study cell division and development
 - Also used to study whole genome duplications, which are common in Xenopus species

EXAMPLE: Images of laboratory a Zebrafish and frog

- - □ They reproduce quickly and share over 99% of protein coding genes with humans
 - Also have similar immune systems
 - $\hfill\Box$ Used to mimic human disease through genetic mutations
 - Mutations in similar disease causing genes cause similar developmental defects

EXAMPLE: Image of a laboratory mouse

- Cell culture grows human or other cells in a laboratory for study
 - □ Used to study _____ mechanisms like signaling, growth, division, and gene expression
 - □ Certain cell types can be harvested and grown in culture (ex: neuronal cells vs. muscle cells)
 - In vitro = "in glass" and In vivo = "in living"
 - □ Can be exposed to certain nutrients, proteins, or chemicals to see how they react

EXAMPLE: Image of cervical cancer cells (HeLa cells) in cell culture. The nuclei have been stained blue.

- Viruses are used to study _____ biology
 - □ Non-living infectious particles composed of a protein coat surrounding genetic material
 - □ Can be manipulated by scientists to add DNA to cells
 - **Retroviruses** are RNA viruses that integrate their genetic material into the host cell's chromosome

EXAMPLE: HIV retrovirus image

PRACTICE:

- 1. Which of the following organisms is often used to study developmental biology?
 - a. E. coli
 - b. Yeast
 - c. C. elegans
 - d. Retroviruses

- 2. Frogs are often used to study development because why?
 - a. They have unusual genetic systems
 - b. Their eggs are large enough to see with the naked eye
 - c. Their embryos are transparent
 - d. They contain a small number of chromosomes

- 3. Which of the following organisms would be the most difficult to use when performing a genetic screen?

 a. Yeast

 - b. E. coli
 - c. Zebrafish
 - d. Mice