CONCEPT: TRANSPORTERS AND ATP-DRIVEN PUMPS

Transporters

- *Transporters* transport _____ molecules across the membrane through conformational changes
 - □ Can modulate passive (Glucose uniport –GLUT1) or active transport
 - ☐ Three classes of active transporters exist
 - ATP-Driven pumps: Use energy from ATP to drive transport
 - **Coupled pumps**: Use energy from concentration gradient of one molecule to drive transport of another
 - Sometimes referred to as indirect active transport
 - Symports move the two molecules in the same direction
 - Antiports move the two molecules in opposite directions
 - Light-driven pumps: Use energy from light to drive transport across a membrane

EXAMPLE:

ATP-powered pump

Coupled Pumps

Light Driven Pumps

- NA²⁺ glucose symporter allows for glucose _____ into the cytosol even when concentrations are high
 - □ Uses energy from sodium moving down its gradient to trigger glucose uptake
 - Binding of sodium enhances the binding of glucose but both are required for transport
 - □ Found on apical surface of gut epithelial
 - □ Different transporters exist on basolateral surface (passive glucose uniporters)

- Releases glucose into blood stream

EXAMPLE: Sodium Glucose Symporter

- Bacteriorhodopsin uses ______ energy to pump H+ ions
 - □ Found in archaea *H. halobium* that lives in the Great Salt Lake in Utah
 - □ Contains *retinal* a molecule that senses light
 - After light hits the retinal, it causes a proton to move to the cell exterior

EXAMPLE: Bacteriorhodopsin pumps H⁺ out of the cell

ATP-Driven Pumps

- The four classes of ATP-driven pumps transport molecules _____ a gradient using energy from ATP
 - □ **P pumps** are phosphorylated in the process of pumping ions across the plasma membrane
 - □ **V pumps** transport H+ ions across a vacuolar membrane
 - Maintaining acidity in lysosomes by pumping H+ into the lumen
 - □ **F pumps** work in reverse by using H⁺ gradients to drive ATP synthesis

- □ **ABC transporters** pump small molecules across the cell membrane (largest group of the four classes)
 - Multi-drug resistance protein (MDR) provide drug resistance by pumping drugs out of cells
 - ABC4 can act as a phospholipid flippase

EXAMPLE:

Examples of ATP-Driven Pumps

- ATP drive pumps generate ionic gradients that drive important cellular processes
 - ☐ The Ca²⁺ pump drives muscle relaxation
 - This P class pump is found in the *sarcoplasmic reticulum* (specialized form of endoplasmic reticulum)
 - Responsible for causing muscle relaxation by pumping calcium from cytosol into SR lumen
 - Calcium and ATP binding cause conformational change that opens and releases calcium into SR lumen

EXAMPLE:

- □ The Na²⁺ K⁺ pump moves sodium and potassium _____ concentration gradients
 - Cytosol: High K+ and low Na+ Extracellular space: Low K+ and high Na2+
 - Pumps three Na²⁺ ions out and two K⁺ ions into the cell per ATP molecule hydrolyzed
 - Creates steep concentration gradients of sodium across the plasma membrane

EXAMPLE: Sodium Potassium Pump

The Sodium-Potassium Exchange Pump

PRACTICE

- 1. Which of the following is not considered a transporter?
 - a. V ATP pump
 - b. Light driven pumps
 - c. Coupled pumps
 - d. lon channels

a.	False: Transporters always require energy to move solutes across a membrane? True False
a. b. c.	f the following classes of ATP-drive pumps can synthesize ATP when reversed? P pumps V pumps F pumps ABC Transporters

- 4. The sodium-potassium pump works by doing what?
 - a. Pumping one sodium ion into the cell, while pumping one potassium ion out of the cell
 - b. Pumping one sodium ion out the cell, while pumping one potassium ion into the cell
 - c. Pumping three sodium ion into the cell, while pumping two potassium ion out of the cell
 - d. Pumping three sodium ion out the cell, while pumping two potassium ion into the cell