CONCEPT: PROTEIN FOLDING

Primary Structure

- Primary structure is the first of four protein folding levels
 - □ Primary structure is the ______ sequence of amino acids in a polypeptide chain
 - ☐ The sequence of amino acids, and their attached R groups provides information for folding the 3D conformation
 - □ Covalent peptide bonds between amino acids hold together the primary structure

EXAMPLE: Primary structure of a protein

Secondary Structure

- The **secondary structure** refers to ______ structures formed by the polypeptide backbone.
 - ☐ The **alpha helix** is one secondary folding pattern
 - Hydrogen bonds made between every fourth amino acid (carboxyl group bound to amino group)
 - Forms a rigid cylinder that can be right handed or left handed
 - Is abundant in skin protein
 - □ A **beta sheet** is another main secondary folding pattern
 - Hydrogen bonds made between segments of the polypeptide chain that are arranged side by side
 - Can be **parallel** (two chains in the same direction) or **antiparallel** (two chains in opposite directions)
 - Is abundant in silk proteins

□ **Disulfide bonds** between the side chains of cysteine can link proteins together and increase stability

EXAMPLE: Secondary structure of a protein

Tertiary Structure

- The **tertiary structure** refers to ____ conformations formed by a single polypeptide chain. Can be functional or structural
 - □ **Structural motifs** are combinations of two or more secondary structures that form a 3D structure
 - A **coiled coil** is 2-3 helices that wrap around each other to form a very stable structure
 - The helix-turn-helix and helix-loop-helix are two common structural motifs named by their helical structure
 - Each structural motif usually has a specific function
 - □ Protein **domains** are segments of the polypeptide chain (40-350 aa) that fold into independent stable structures
 - Each domain usually has a specific ______
 - Certain domains are found in multiple proteins (SH2 domains is found in 120 polypeptide chains)
 - **Domain shuffling** is an evolutionary process that linked domains in new combinations
 - Two-thirds of proteins contain 2+ domains
 - □ Tertiary structure forms two main protein types: *Fibrous proteins* and *Globular proteins*
 - Fibrous proteins are proteins with an elongated shape
 - **Globular proteins** are proteins with a compact shape

Quaternary Structure

- The quaternary structure refers to a protein complex with one polypeptide chain
 - □ Only found in **multimeric proteins** which are composed of 2+ polypeptide chains
 - □ A **subunit** is a single polypeptide chain which is a part of a larger protein complex
 - Each subunit can be identical or non-identical to other subunits
 - A **homomeric proteins:** composed of identical subunits
 - A heteromeric proteins: composed of non-identical subunits
 - □ Quaternary structure is stabilized by the same non-covalent interactions and *disulfide bonds* as tertiary structure
 - Hydrogen bonds, van der Waals forces, hydrophobic interactions, ionic bonds

EXAMPLE: Quaternary structure of a protein

Unstructured Regions of a Protein

• Unstructured regions (disordered regions) exist between _____ protein structures or domains

□ Provide flexibility to protein structure and folding	
- Wrap around target proteins with high specificity b	ut low affinity
- Can help scaffold proteins together	
$\hfill\Box$ Nearly one-third of eukaryotic proteins have unstructured	regions in at least one polypeptide chain
- Some can be found as the	_ polypeptide chain – usually form aggregates in cytosol

□ **Disulfide bonds** between the side chains of cysteine can link proteins together and increase stability

EXAMPLE: Unstructured regions of a protein (grey) surround structured regions (red/blue)

PRACTICE

4				1 1				1 6 11
7	 Match the f 	tallawina	nrotoin	Ctructuroc	VA/ITH 1	thair an	nranriata	dotinitions
1	IVIAICH IIIE	10) 0)VV 0)	OI OI EII I	2000000000	VVIIII	แเลเ ลเ	oroonale.	OEIHINOUS

I.	Primary	Structure
----	---------	-----------

	v Structure

iii.	Tertiary Structure	
İ۷.	Quaternary Structure	

- A. 3D conformation of a single polypeptide chain
 B. Linear sequence of amino acids
 C. Folding of multiple polypeptide chains together
 D. Local structures of a single polypeptide chain