CONCEPT: ACTIN FILAMENTS

<u>Structure</u>

- Actin filaments (microfilaments) are cytoskeletal elements crucial for cell movements
 - □ **G** actin subunits are monomers that make up the larger actin filaments
 - F actin filaments are composed of two strands of G actin wound around each other
 - There are many types of actin (alpha = muscle; beta= nonmuscle; gamma = nonmuscle)
 - □ Position of actin subunits provide ______ to the F actin filaments
 - Minus end (pointed end) and plus end (barbed end)

EXAMPLE:

- Actin filaments polymerize ______ to that of microtubules
 - □ G actin monomer are added to each end
 - However, addition occurs faster at the plus end than the minus end
 - □ Each time a G actin monomer is added it hydrolyzes ATP shortly after addition
 - Hydrolyzed slowly: promotes filament growth
 - Hydrolyzed quickly: destabilization results in loss of actin polymers (minus end)
 - □ Also undergoes dynamic instability and treadmilling
 - Dynamic instability is the rapid switch from growth to shrinkage at plus end

- Treadmilling is the gain of monomers at the plus end and loss of monomers at the minus end

EXAMPLE:

Associated Proteins and Organization

- Many proteins are associated with actin to assist in _______, and function
 - □ Arp2/3 complex and formins assist in *nucleation* which controls where actin filaments are formed
 - □ **ADF/Cofilin** binds to actin and enhances disassociation of ADP-actin
 - **Profilin** reverses this action, and stimulates addition of actin monomers into filaments
 - Hydrolyzed quickly: destabilization results in loss of actin polymers (minus end)
 - □ Proteins help regulate actin in many different ways
 - Ex: Regulate polymerization, cap actin filaments, crosslink, sever, bundle, attach actin

EXAMPLE: Arp2/3 promoting actin filament formation

- The cell organizes actin in a few distinct ways
 - □ **Actin bundles** form when actin filaments are cross linked into closely packed parallel arrays
 - □ **Actin networks** form with actin filaments are cross linked into orthogonal arrays
 - 3D meshwork is formed with characteristics like that of a semisolid ______
 - □ Cell cortex is composed of actin filaments and actin-associated proteins and lies beneath the plasma membrane
 - □ **Microvili** are fingerlike extensions of the plasma membrane that are involved in absorption (made of actin)
 - Cells can have a **brush border** which is a layer of microvilli on the cell surface

EXAMPLE: Actin filaments supporting microvilli on the surface of plasma membrane

PRACTICE:

- 1. Which of the following proteins are associated with actin nucleation?
 - a. Arp 2/3 b. ADF

 - c. Profilin
 - d. Integrin

- 2. True or False: Actin monomers are added to both the minus end and the plus end of a growing actin filament?
 - a. True
 - b. False

3.	Which o	hich of the following terms describes the addition of monomers at the plus end and the loss of monomers at the	
	minus e	end?	
	a.	Dynamic instability	
	b.	Treadmilling	

- 4. If ATP at the minus end is hydrolyzed quickly, what happens to an actin filament? a. The filament grows at the minus end

 - b. The filament is destabilized at the minus end
 - c. The filament grows at both the minus and plus ends
 - d. The filament is destabilized at both the minus and plus ends