CONCEPT: COMPLEX PROTEIN STRUCTURES

- Proteins are often made up of more than one polypeptide chain
 - □ **Binding sites** on polypeptide chains allow for them to interact with other polypeptide chains and complexes
 - □ **Multi-protein complexes** are made up of multiple polypeptide chains with ______ functions
 - These are dynamic structures, and can assemble and disassemble in response to cellular signals
 - Example include protein machines that drive DNA synthesis, RNA processing, and ATP creation
 - □ Stabilization of large protein complexes occurs through covalent ______ bonds
 - Especially common in the extracellular matrix
 - □ Mostly, noncovalent bonds connect polypeptide chains together

EXAMPLE: The exosome multi-protein complex is made up of 6 proteins represented by a different color

- Proteins and multi-protein complexes can form ______ shapes
 - ☐ *Helices* are a common shape of proteins
 - Helix is most energetically favorable way to link similar subunits in a long repetitive chain
 - □ Elongated fibrous shapes are another common shape of proteins
 - Fibrous proteins found in skin or the extracellular matrix
 - □ Compact globular shapes are a common shape of proteins
 - □ Unstructured polypeptide chains can provide flexibility to large protein structures

- Can be covalently cross-linked to create an elastic meshwork (Ex. Elastin)

EXAMPLE: Examples of diverse protein shapes

PRACTICE

- 1. What type of bonds hold polypeptide chains together to form complex proteins?
 - a. Covalent bonds
 - b. Phosphodiester bonds
 - c. Ester bonds
 - d. Noncovalent bonds

- 2. True or False: Due to the number of polypeptide chains, multiple protein complexes can only have a singular, globular shape.
 - a. True
 - b. False