CONCEPT: PROTEIN KINASE RECEPTORS

Structure and Activation

- Protein kinase receptors (enzyme coupled receptors) are transmembrane proteins that are activated via ligand binding
 There are two main _______:
 - Receptor kinases are receptors that contain kinase activity on the cytosolic surface
 - Include receptor tyrosine kinases (largest class) and receptor serine-threonine kinases
 - Named based on the amino acids they phosphorylate
 - Non-receptor kinases are kinases that only bind to a receptor when its bound to a ligand

EXAMPLE: Two types of receptors

- - □ Ligand binding causes two receptor molecules to bind and form a dimer
 - One receptor phosphorylates (activates) the other receptor's kinase domains (*transautophosphorylation*)
 - □ Once phosphorylated, other intracellular signaling molecules and complex are recruited to cytosolic tails
 - Adaptor proteins can be recruited to link signaling proteins together to form a signaling complex
 - **Docking proteins** can be recruited to serve as docking sites for other proteins
 - Transcription factors can be recruited for activation and subsequent transfer to the nucleus
 - Other signaling enzymes can also be recruited
 - □ SH2 domain is a common amino acid domain on signaling molecules which bind phosphorylated

EXAMPLE: Example of intracellular signaling molecule recruitment

Inhibiting the Receptor Activation and Signaling

- Down regulation of signaling occurs in _____ ways
 - $\hfill\square$ Receptor mediated endocytosis internalizes the receptor so it can no longer signal from the plasma membrane
 - 20-50% of the receptor is degraded, with the rest being eventually returned to the plasma membrane
 - □ Lysosomal degradation can destroy the receptor so it cannot signal
 - □ **Phosphotyrosine phosphatases** will remove phosphates from activated RTKs to inactivate them
 - □ **SOCS** proteins terminate signals from special receptors that bind to cytokine signaling molecules

EXAMPLE: Methods of receptor inhibition

Common Receptor Protein Kinase Signaling Pathways

- Activation of Ras, which is a small GTP binding protein that acts as a major signaling
 - □ Virtually all receptor tyrosine kinases (RTKs) activate Ras
 - Ras is mutated in around 30% of all cancers
 - □ Ras cycles between an active (GTP-bound) form an inactive (GDP-bound) form
 - Autophosphorylation of the RTK GRB2 results in Ras activation (GDP to GTP)
 - □ When activated, it phosphorylates and activates a of serine threonine protein kinases
 - MAP kinase signaling pathway:
 - MAP kinase kinase kinase is phosphorylated by Ras → MAP kinase kinase → MAP kinase
 - Map kinase kinase kinase can phosphorylate nuclear proteins which regulate gene expression (Ex: *Jun*)

EXAMPLE: Ras MAPK Signaling Pathway

- RTKs also activate phosphoinositide 3-kinase by phosphorylating inositol phospholipids in plasma membrane
 - □ Phosphorylation serves as a docking site for other signaling proteins
 - Protekin kinase B (Akt) inhibits the Bad protein, which prevents apoptosis to promote survival
 - Phospholipiase C results in formation of IP3 and DAG

EXAMPLE: PI3K→AKT→BAD Pathway

- Transforming growth factor beta (TGFβ) is activated by serine-threonine _____
 - □ TGF binds to the TGF receptor resulting in dimerization of two types of serine-threnoine kinases
 - Type II phosphorylated Type I
 - Type I initiates signal transduction cascade
 - □ Results in phosphorylation and activation of **SMADs** (transcription factors)

EXAMPLE: TGF beta signaling pathway

Non-Receptor Protein Kinase Signaling Pathway (JAK/STAT)

- The JAK/STAT signaling pathway is a great example of non-receptor tyrosine kinases
 - □ Cytokine signaling molecules bind to a ______ on the plasma membrane
 - Recruits the Janus kinase (JAK) to the receptor and activates it
 - JAK then recruits, phosphorylates, and activates **STATS** a family of transcription factors
 - Once phosphorylated STAT disassociates from JAK and can travel to nucleus
 - □ There are four JAKs and six STATS which each regulate different signaling pathways

EXAMPLE: JAK/STAT Pathway

PRACTICE:

- 1. Which of the following is not a common example of protein kinase signaling cascades?
 - a. $TGF\beta$
 - b. Inositol Phospholipid pathway
 - c. MAP Kinase pathway
 - d. GTP signaling

- 2. Ligand binding to a receptor kinase causes what to happen?
 - a. Immediate activation of the single receptor kinase
 - b. Dimerization and inactivation of two receptor kinases
 - c. Dimerization and activation of two receptor kinases
 - d. Binding of the kinase to the receptor

- 3. Which of the following is not a way to inhibit receptor activation?
 - a. Phosphatases removing phosphates from the receptor
 - b. Receptor mediated endocytosis
 - c. Lysosomal Degradation
 - d. Autophosphorylation

- 4. Which pathway can activate the MAP kinase pathway?
 - a. $\mathsf{TGF}\beta$
 - b. Inositol Phospholipid pathway
 - c. Ras signaling
 - d. JAK/STAT