CONCEPT: ER PROCESSING AND TRANSPORT

Two types of ER import

- Co-translational import is the process of ______ proteins into the ER as they're being translated
 - □ **ER signal sequence** directs the mRNA and ribosome to the ER during translation (located on N-terminus)
 - Signal recognition particle (SRP) recognizes the ER signal sequence
 - Signal recognition particle receptor (SRPR) is located on the ER and binds to the SRP
 - □ **Translocon** is a pore in the ER membrane that binds SRP and SRPR to translocate the protein into ER
 - Uses GTP hydrolysis for energy
 - Signal peptidase cleaves the ER signal sequence off once it is inside the ER

EXAMPLE: Co-translational import of a protein

- Post-translational import is the process of importing proteins into the ER _____ they've been translated
 - ☐ The chaperone protein **BiP** helps pull the protein across the membrane and fold it once its inside
- ER-retention signals are located on the C-terminus and keeps proteins within the ER

EXAMPLE: Posttranslational import

Inserting Proteins into the Membrane

- - □ Start transfer signal is a signal sequence which opens a translocon and the protein is translocated through it
 - Stop transfer signal signals to anchor the protein in the membrane
 - The ER signal sequence is then released from the translocon and cleaved off
 - □ Start transfer signal can be on the N-terminus or located within the middle of the polypeptide chain

EXAMPLE: Insertion of single pass transmembrane protein

Single Pass Transmembrane Protein

- Multi pass transmembrane proteins have more than one insertion in the membrane
 - □ Polypeptide chains contain multiple start and stop _____ sequences
 - Order of sequence determines whether it is a start or stop sequence (the start sequence is first)
 - Multiple start transfer sequence initiate translocation at different sections along the polypeptide chain

EXAMPLE: Insertion of a multi pass transmembrane protein

ER Protein Modifications

- - □ **Glycosylation** of proteins occurs in the ER
 - **Dolichol** is a precursor oligosaccharide which is added to proteins for N-linked glycosylation
 - Oligosaccharides are important tags to mark the state of protein folding chaperons bind them
 - □ Glycosylphosphatidyl-inositol (GPI) anchor is added to proteins destined for the plasma membrane
 - Can be easily cleaved off in order to release proteins into the extracellular environment

EXAMPLE: Glycosylation in the ER

- □ **Protein disulfide isomerase** assists with protein disulfide bond formation
- □ **Unfolded protein response** detects misfolded proteins
 - ER-associated degradation (ERAD) proteins recognize misfolded proteins and transports them to cytosol

EXAMPLE: Unfolded Protein Response in the ER

Ρ	R	٩C	ΤI	C	E:	

1.	Match the following term with its definition					
	l.	Co-translational import				
	II.	Post-translational import				
	III.	ER retention signal				
	IV.	Translocon				

- A. Pore in the ER membrane that binds SRP and SRPR to translocate the protein into ER
- B. Signal sequence located on the C-terminus and keeps proteins within the ER
- C. Process of importing proteins into the ER as they're being translated
- D. importing proteins into the ER after they've been translated

- 2. Which of the following is responsible for recognizing the ER signal sequence?
 - a. Signal Recognition Particle
 - b. Signal Recognition Particle Receptor
 - c. Translocon
 - d. Stop Transfer Sequence

3.	A protein contains 5 start/stop transfer sequences. How many times will this protein cross the membrane? a. 2 b. 5 c. 10 d. 3
4.	Glycosylation of proteins in the ER is associated with which of the following molecules or responses? a. Unfolded protein response b. Protein disulfide isomerase c. Glycosylphosphatidyl-inositol (GPI) anchor d. Dolichol