CONCEPT: GENOME EVOLUTION

Mutations in Evolution

- - □ **Point mutations** are changes in a single nucleotide pair
 - Can be beneficial or detrimental to the organisms
 - Arise from errors in DNA replication
 - □ Mutations can occur in the gene, or in regulatory DNA
 - Gene: effects activity, interaction, stability and is easy to spot
 - Regulatory DNA: effects how genes are expressed and are not so easy to find

EXAMPLE: Point mutations can affect amino acid sequence

Gene Duplication in Evolution

- Gene duplication is a main driver of genomic evolution
 - □ Gene families are groups of genes with similar sequences but _____
 - Once a gene is duplicated, each copy is free to accumulate mutations that result in different functions

functions

- Gene families are the result of gene duplication

EXAMPLE: Structure of hemoglobin demonstrates gene families

- □ Gene duplication arises from _____ crossing over during mitosis
 - Misalignment of chromosomes during homologous recombination can lead to lopsided genetic exchange
 - Result: one chromosome with extra gene copy and one with no copy
- □ **Pseudogenes** are duplicated genes that have lost their functional ability but remain in the genome
 - Processed pseudogenes occur by changing a mRNA to a DNA and integrating it into a chromosome
- □ Whole genome duplication is when the entire genome of an organisms is copied and retained in a single cell
 - **Polyploidization** (whole genome duplications) are common in fungi and plants

EXAMPLE: Unequal crossing over results in duplicated genes

Introns and Splicing in Evolution

- The presence of *introns* allows for gene shuffling and gene evolution
 - ☐ Genes of most organisms contain *Introns* and *Exons* (not completely universal ex: Histone proteins)
 - **Introns** are noncoding regions of a gene that are cut out during gene processing
 - **Exons** are the coding regions of a gene
 - □ **Alternative splicing** is the combining of exons from one gene in new orders (occurs in 50-90% of human genes)
 - Produce isoforms which are different forms of the same protein produced through alternative splicing
 - □ **Exon shuffling** is the combining of exons from two _____ genes
 - Can also occur if exons are duplicated or moved to different genomic location

EXAMPLE: Model of alternative splicing

Repetitive DNA sequences in Evolution

- Repetitive DNA sequences are have evolved in the genomes and are extremely common
 - □ **Simple-sequence repeats** are arrays of thousands of copies of a short sequence (1-500 nucleotide)
 - Drosophila: ACAAACT
 - Not transcribed, and contain no genetic information
 - □ **Mobile genetic elements** are DNA sequences that can ______ through the genome
 - Contain repetitive DNA flanking protein coding regions
 - Transposons are mobile genetic elements and can move through RNA or DNA intermediates
 - Insert anywhere in a gene, and can effect gene structure or regulation

EXAMPLE: Example of sequence repeats in the genetic code

PRACTICE:

- 1. Which of the following is not a driver of genome evolution?
 - a. Mutations
 - b. Gene duplication

 - c. Alternative Splicingd. Histone modifications

- 2. Which of the following genomic changes are most likely to cause pseudogenes?
 - a. Point Mutations
 - b. Gene Duplications
 - c. Exon Shuffling
 - d. Transposons

- 3. Protein isoforms are created through which process?
 - a. Point Mutations
 - b. Alternative Splicing
 - c. Exon Shuffling
 - d. Simple Sequence Repeats