CONCEPT: CONTROL OF GENE EXPRESSION BASICS

- Gene expression is the process through which cells selectively _____ to express some genes and not others
 - □ Every cell in an organism is a **clone** because they all contain an identical copy of DNA
 - Different appearances and function depends on selectively expressing certain genes and not others
 - ☐ Gene expression controls the expression of proteins and RNAs
 - □ Cell **differentiation** is the process by which a cell becomes ______ for a particular function
 - Differentiation is entirely directed by gene expression control
 - Allows for the development of multicellular organisms with diverse cell types

EXAMPLE: Differentiation of a stem cell into many different blood cell types

- Gene expression can be ______ at various steps in the DNA to RNA to Protein pathways
 - ☐ Gene expression can be controlled by external signals
 - One example is through hormones
 - □ Housekeeping genes are genes expressed in every cell because they are critical for cellular life
 - Examples include: Ribosomal genes, RNA polymerase genes, DNA repair genes

EXAMPLE: The many ways gene expression can be controlled

PRACTICE:

- 1. Gene expression is defined as which of the following?
 - a. Genes are expressed because each cell contains a different set of genes
 - b. Choosing which genes are expression by regulating only transcription
 - c. Choosing which genes are expression because on only internal signals
 - d. Cells choosing to express some genes and not others at many steps in the DNA to protein pathway

- 2. True or False: Every gene is regulated differently in each cell type.a. Trueb. False