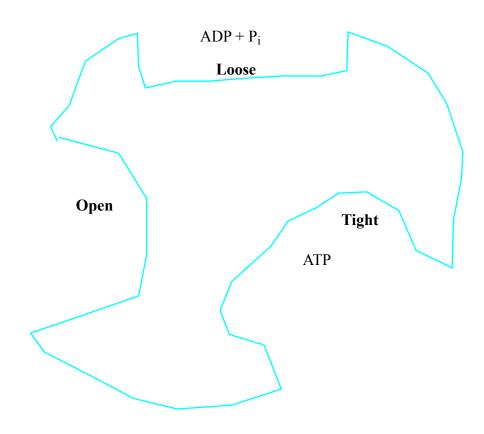

CONCEPT: ATP SYNTHESIS DRIVE FROM PROTON GRADIENTS

- - □ The **electrochemical proton gradient** is created by an H⁺ gradient and a voltage (charge) gradient
 - Occurs across the inner mitochondrial membrane
 - Driven by the electron transport chain
 - □ Chemiosmotic coupling: Electron transport chain and H+ pumping across a membrane drives ATP synthesis

EXAMPLE: Chemiosmotic coupling across the inner mitochondrial membrane

- ATP synthase is the transmembrane ______ that drives ATP synthesis
 - □ In cell respiration the F₁F₀ ATP synthase drives ATP
 - Uses energy from the electrochemical proton gradient to create ATP
 - F₀: The "stationary head" is responsible for catalyzing ATP synthesis (cytosolic side)
 - F₁: Rotation of the γ subunit drives proton translocation across the membrane
 - □ ATP synthase can also run in _____
 - Uses energy from ATP to pump protons uphill


EXAMPLE: ATP synthase

- Proton pumping and ATP synthesis are ______ events
 - □ Proton pumping occurs in 4 main steps
 - 1. An $H^{\scriptscriptstyle +}$ moves into an empty binding site within the F_0 subunit causing a conformational change
 - 2. This conformational change displaces protons further up the channel
 - 3. Protons change place, which causes rotation of the F_1 channel
 - 4. The rotation allows for the continual displacement and movement of protons down their gradient
 - □ ATP synthesis occurs in three main stages which use energy from H+ translocation to increase affinity for ADP
 - 1. O stage (open): The F_{o} head binds ATP poorly and ADP weakly
 - 2. L stage (loose): The F_o head cannot bind ATP but binds ADP and P_i

- 3. **T stage** (tight): The F_0 head binds ADP and P_i so tightly they spontaneously form ATP
- The energy from two H+ translocations triggers conformational changes and ATP synthesis
- 100 molecules of ATP are made per second (3 ATPs per revolution)

EXAMPLE: The O, L and T stages of ATP synthesis

PRACTICE

- 1. Which of the following is not a stage of ATP synthesis?
 - a. A stage
 - b. O stage
 - c. T stage
 - d. L stage

- 2. Which one of the following structures is responsible for catalyzing the ADP to ATP reaction?
 - a. F₁ rotation
 - b. F₀ head
 - c. γ subunit

3.	True or False: When ATPase is run "backwards" its purpose is to convert ATP to ADP to create a H+ gradient. a. True b. False

4. Where does the ATPase get its energy to generate more ATP? a. Other ATP molecules

c. Hydrolysis of H₂Od. Electrochemical proton gradient

b. GTP