CONCEPT: LIGHT DEPENDENT REACTIONS

Photosystem Structure

- Photosystems are two protein _____ where the light-dependent reactions take place
 - □ Photosystems are embedded in the thylakoid membrane
 - ☐ The **light harvesting center (antenna complex)** absorbs the light energy and turns it into electrical energy
 - **Photoexcitation** is when light energy excites an electron
 - ☐ The **reaction center** accepts the electrical energy and transfers it to chemical energy
 - □ The photosynthetic pigment **chlorophyll** accepts light energy in the chloroplast
 - Contains a light-absorbing ring (porphyrin ring) with easily ______ electrons
 - Once electrons are excited they want to release the energy can be converted to different energy forms
 - □ Electrons travel between photosystems and other protein complex through electron carriers

EXAMPLE: Overview of a photosystem

Light Dependent Reaction Steps

- 1. A light photon enters into the light harvesting center of **photosystem II** and hits a chlorophyll molecule
- 2. An electron in the chlorophyll pigment is excited, and that energy bounces around between many chlorophylls
 - Called **resonance energy transfer** when energy transfers between pigment molecules
- 3. Eventually this energy is transferred to a special pair of electrons (**P680**) and one electron is transferred to plastoquinoine (becomes reduced to plastoquinol)
 - The donated electron is replaced by splitting two H₂O (**phoyolysis**) molecules to form O₂
 - **Primary electron acceptor** is the molecule that accepts electrons from the reaction center

EXAMPLE: First three light dependent steps in Photosystem II

- 4. Plastoquinol transfers the electrons to an **electron transport system**
 - Cytochrom B₆F complex uses the energy from the electron to pump H⁺ into thylakoid space
 - The electron is transferred to the electron carrier plastocyanin

EXAMPLE: Step 4 of light-dependent reactions shows electrons flow down the electron transport system

- 5. A light photon enters into the light harvesting center of **photosystem I** and hits a chlorophyll molecule
- 6. An electron in the chlorophyll pigment is excited, and that energy bounces around between many chlorophylls
- 7. This energy is transferred to a special pair of electrons (**P700**) and one electron is transferred to ferrodoxin
 - The donated electron is replaced by the electron from photosystem II

EXAMPLE: Steps 5-7 of the light-dependent reactions involving photosystem I

8. Ferrodoxin carries the electron to **NADP**+ **reductase** to form NADPH in the stoma (used in the light independent reaction)

EXAMPLE: NADP+ reductase forming NADPH in stroma

9. The H+ gradient is funneled through ATP synthase to form ATP

EXAMPLE: Overview of photosynthesis

Cyclic Light Dependent Reactions (Cyclic Photophosphorylation)

- In cyclic light dependent reactions the process ______ ATP but not NADPH
 - $\hfill\Box$ Photosystem II works the same as in the linear pathways
 - □ Photosystem I works in reverse and transports an electron to the electron transport center
 - Creates more ATP instead of NADPH

EXAMPLE: Cyclic light dependent reactions

PRACTICE:

- 1. Which part of the photosystem is responsible for accepting a light photon?
 - a. Chlorophyll
 - b. Reaction Center
 - c. Primary Acceptor
 - d. Cytochrome

- 2. Oxygen is formed by a reaction occurring where?
 - a. Photosystem I
 - b. Photosystem II
 - c. Cytochrome B₆F complex
 - d. NADP+ reductase

- 3. Where in the chloroplast is NADPH synthesized?
 - a. Thylakoid membrane
 - b. Grana
 - c. Thylaoid lumen
 - d. Stroma

- 4. Cyclic photophosphorylation is different than photosynthesis in what way?
 - a. Photosystem II reverses and generates CO₂
 - b. Photosystem I reverses and transports and electron to the electron transport center
 - c. The entire process generates more NADPH than ATP
 - d. Photolysis doesn't occur